Test for lack of effect in the functional linear model

Author(s):  
Lajos Horváth ◽  
Piotr Kokoszka
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Alassane Aw ◽  
Emmanuel Nicolas Cabral

AbstractThe spatial lag model (SLM) has been widely studied in the literature for spatialised data modeling in various disciplines such as geography, economics, demography, regional sciences, etc. This is an extension of the classical linear model that takes into account the proximity of spatial units in modeling. In this paper, we propose a Bayesian estimation of the functional spatial lag (FSLM) model. The Bayesian MCMC technique is used as a method of estimation for the parameters of the model. A simulation study is conducted in order to compare the results of the Bayesian functional spatial lag model with the functional spatial lag model and the functional linear model. As an illustration, the proposed Bayesian functional spatial lag model is used to establish a relationship between the unemployment rate and the curves of illiteracy rate observed in the 45 departments of Senegal.


2010 ◽  
Vol 101 (2) ◽  
pp. 327-339 ◽  
Author(s):  
Manuel Febrero-Bande ◽  
Pedro Galeano ◽  
Wenceslao González-Manteiga

2019 ◽  
Vol 09 (04) ◽  
pp. 2050017
Author(s):  
Zhiqiang Jiang ◽  
Zhensheng Huang ◽  
Guoliang Fan

This paper considers empirical likelihood inference for a high-dimensional partially functional linear model. An empirical log-likelihood ratio statistic is constructed for the regression coefficients of non-functional predictors and proved to be asymptotically normally distributed under some regularity conditions. Moreover, maximum empirical likelihood estimators of the regression coefficients of non-functional predictors are proposed and their asymptotic properties are obtained. Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real data set is analyzed for illustration.


Econometrics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Haili Zhang ◽  
Guohua Zou

Functional data is a common and important type in econometrics and has been easier and easier to collect in the big data era. To improve estimation accuracy and reduce forecast risks with functional data, in this paper, we propose a novel cross-validation model averaging method for generalized functional linear model where the scalar response variable is related to a random function predictor by a link function. We establish asymptotic theoretical result on the optimality of the weights selected by our method when the true model is not in the candidate model set. Our simulations show that the proposed method often performs better than the commonly used model selection and averaging methods. We also apply the proposed method to Beijing second-hand house price data.


2015 ◽  
Vol 58 (11) ◽  
pp. 2421-2434 ◽  
Author(s):  
LeLe Huang ◽  
HuiWen Wang ◽  
HengJian Cui ◽  
SiYang Wang

2020 ◽  
Vol 34 (3) ◽  
pp. 309-326
Author(s):  
Miyoung Lee ◽  
◽  
Sung-Jae Kwon

Sign in / Sign up

Export Citation Format

Share Document