Using Kepler’s Third Law to Find the Masses of Stars and Planets

Author(s):  
Douglas W. MacDougal
Keyword(s):  
2004 ◽  
Vol 191 ◽  
pp. 92-99
Author(s):  
L.F. Rodríguez

AbstractUsing high-resolution (~ 01), multi-epoch Very Large Array observations, we have detected orbital motions in several low-luminosity protobinary systems in the Taurus and ρ Ophiuchus molecular complexes. The masses obtained from Kepler’s third law are of the order of 0.5 to 2 M⊙, as expected for such low-mass protostars. The relatively large bolometric luminosities of these young systems corroborates the notion that protostars obtain most of their luminosity from accretion and not from nuclear reactions. In addition, in one of the sources studied (a multiple system in Taurus), a low-mass young star has shown a drastic change in its orbit after a close approach with another component of the system, presumed to be a double star. The large proper motion achieved by this low mass protostar (20 km s−1), suggests an ejection from the system.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


2012 ◽  
Author(s):  
Kimberly A. Schreck ◽  
Melissa Russell ◽  
Luis Vargas ◽  
Tanya Brucie ◽  
Jennifer Hall

1973 ◽  
Vol 30 (01) ◽  
pp. 036-046 ◽  
Author(s):  
D.C Banks ◽  
J.R.A Mitchell

SummaryWhen heparinised blood is rotated in a glass flask at 37°C. the white cell count falls and it has been shown that this is due to the adherence and aggregation of polymorphonuclear white cells on the wall of the flask. The masses formed bear a close structural resemblance to thrombi and the mechanisms involved in white cell loss during rotation may therefore increase our knowledge of the thrombotic process.


AEI 2011 ◽  
2011 ◽  
Author(s):  
Brent Nuttall ◽  
Jill Nelson ◽  
Allen C. Estes

Sign in / Sign up

Export Citation Format

Share Document