State Estimate of Wind Turbine Blades Using Geometrically Exact Beam Theory

Author(s):  
Stuart G. Taylor ◽  
Darby J. Luscher ◽  
Michael D. Todd
2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Xiaocheng Zhu ◽  
Jinge Chen ◽  
Xin Shen ◽  
Zhaohui Du

Along with the upscaling tendency, lighter and so more flexible wind turbine blades are introduced for reducing material and manufacturing costs. The flexible blade deforms under aerodynamic loads and in turn affects the flow field, arising the aeroelastic problems. In this paper, the impacts of blade flexibility on the wind turbine loads, power production, and pitch actions are discussed. An advanced aeroelastic model is developed for the study. A free wake vortex lattice model instead of the traditionally used blade element momentum (BEM) method is used to calculate the aerodynamic loads, and a geometrically exact beam theory is adopted to compute the blade structural dynamics. The flap, lead-lag bending, and torsion degrees-of-freedom (DOFs) are all included and nonlinear effects due to large deflections are considered. The National Renewable Energy Laboratory (NREL) 5 MW reference wind turbine is analyzed. It is found that the blade torsion deformations are significantly affected by both the aerodynamic torsion moment and the sectional aerodynamic center offset with respect to the blade elastic axis. Simulation results further show that the largest bending deflection of the blade occurs at the rated wind speed, while the torsion deformation in toward-feather direction continuously increases along with the above-rated wind speed. A significant reduction of the rotor power is observed especially at large wind speed when considering the blade flexibility, which is proved mainly due to the blade torsion deformations instead of the pure-bending deflections. Lower pitch angle settings are found required to maintain the constant rotor power at above-rated wind speeds.


Author(s):  
Jinge Chen ◽  
Xin Shen ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

Along with the upscaling tendency, lighter and so more flexible wind turbine blades are introduced for reducing cost of manufacture and materials. The flexible blade deforms under aerodynamic loads and in turn affects the flow field, arising the aero-elastic problems. In this paper, the impact of blade flexibility on the wind turbine loads, power production, and pitch actions is discussed. An aeroelastic model is developed for the study. A free wake vortex lattice model is used to calculate the aerodynamic loads, and a geometrically exact beam theory is adopted to compute the structural dynamics of the blade. The flap, lead-lag bending and torsion DOFs are all included and nonlinear effects due to large deflections are considered. The NREL 5MW reference wind turbine is analyzed. Influences of pure-bending and bending-torsion deformations of the blade on aerodynamic loads are compared. The aerodynamic force distributions under various wind speeds for rigid and flexible blades are also compared. The steady state deformations across the operational conditions are calculated, along with the rotor power production. Significant reduction of power is seen especially under large wind speeds, due to the blade twist deformations under torsion moments. Lower pitch angle settings should be applied to maintain the constant power.


2019 ◽  
Vol 180 ◽  
pp. 357-378 ◽  
Author(s):  
Celso Jaco Faccio Júnior ◽  
Ana Carolina Pegoraro Cardozo ◽  
Valdemar Monteiro Júnior ◽  
Alfredo Gay Neto

2021 ◽  
Vol 271 ◽  
pp. 01005
Author(s):  
Xiaohang Qian ◽  
Zhiteng Gao ◽  
Zhiyong Zhang ◽  
Tongguang Wang

As the size of wind turbine blades increases, the influence of geometric nonlinearity on aerodynamic, structural and design of blades becomes more and more serious. In this work, the efficient aero-elastic calculation of large flexible blades is studied. In order to solve the problem of efficient aeroelastic caculation of large flexible blades, this work applied the geometrically exact beam theory based on Legendre spectral finite element and coupled with the blade element momentum theory to establish the aero-elastic analysis model of large flexible blades. This model can efficiently calculate the deformation and load on the blade under aerodynamic loading and fully consider the influence of geometric nonlinearity caused by deformation on aeroelastic ability. Taking NREL 5MW and IEA 15MW wind turbines as examples, the linear and nonlinear dynamic responses of these two wind turbine blades are calculated. The result shows that the neglect of nonlinear effect will bring error. From 5MW wind turbine to 15MW wind turbine, the numerical error increased by 27.88%. The influence of geometric nonlinearity of blades on dynamic responses is analysed, which is of great significance to improve the design level of large-scale wind turbines.


Sign in / Sign up

Export Citation Format

Share Document