Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory

Energy ◽  
2014 ◽  
Vol 76 ◽  
pp. 487-501 ◽  
Author(s):  
Lin Wang ◽  
Xiongwei Liu ◽  
Nathalie Renevier ◽  
Matthew Stables ◽  
George M. Hall
2009 ◽  
Vol 23 (03) ◽  
pp. 493-496 ◽  
Author(s):  
HAI-QING SI ◽  
TONG-GUANG WANG

A dynamic stall model is coupled with the blade element momentum theory to calculate the cyclic variation of the aerodynamic characteristics of the wind turbine in yawed flow. In the dynamic stall model, unsteady effects under attached flow conditions are simulated by the superposition of indicial aerodynamic responses. The movement of the unsteady flow separation point is related to the static separation based on the Kirchhoff flow model via a deficiency function, in which the unsteady boundary layer response and the leading edge pressure response are taken into consideration. The induced vortex force and the associated pitching moment are represented empirically in a time-dependent manner during dynamic stall. The required input of the inflow velocity and incidence to the dynamic stall model is calculated using the improved blade element momentum theory. The calculated results are compared well with the NREL UAE Phase VI experimental data. For completeness, possible factors causing the difference between calculated and experimental results are analyzed and discussed in detail in this paper.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Xiaocheng Zhu ◽  
Jinge Chen ◽  
Xin Shen ◽  
Zhaohui Du

Along with the upscaling tendency, lighter and so more flexible wind turbine blades are introduced for reducing material and manufacturing costs. The flexible blade deforms under aerodynamic loads and in turn affects the flow field, arising the aeroelastic problems. In this paper, the impacts of blade flexibility on the wind turbine loads, power production, and pitch actions are discussed. An advanced aeroelastic model is developed for the study. A free wake vortex lattice model instead of the traditionally used blade element momentum (BEM) method is used to calculate the aerodynamic loads, and a geometrically exact beam theory is adopted to compute the blade structural dynamics. The flap, lead-lag bending, and torsion degrees-of-freedom (DOFs) are all included and nonlinear effects due to large deflections are considered. The National Renewable Energy Laboratory (NREL) 5 MW reference wind turbine is analyzed. It is found that the blade torsion deformations are significantly affected by both the aerodynamic torsion moment and the sectional aerodynamic center offset with respect to the blade elastic axis. Simulation results further show that the largest bending deflection of the blade occurs at the rated wind speed, while the torsion deformation in toward-feather direction continuously increases along with the above-rated wind speed. A significant reduction of the rotor power is observed especially at large wind speed when considering the blade flexibility, which is proved mainly due to the blade torsion deformations instead of the pure-bending deflections. Lower pitch angle settings are found required to maintain the constant rotor power at above-rated wind speeds.


2018 ◽  
Vol 43 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Ahmed Tahir ◽  
Mohamed Elgabaili ◽  
Zakariya Rajab ◽  
Nagi Buaossa ◽  
Ashraf Khalil ◽  
...  

Typically, it is desired to operate the wind turbine at the maximum power point. However, in small wind turbines which have a storage system integrated with them, harvesting as much energy as possible is more crucial. This may be achieved by reducing the cut-in speed while maximizing the mechanical power. These two goals may be achieved by optimizing the turbine blades. In this article, the turbine blades are optimized using improved blade element momentum theory including Viterna-Corrigan stall model with the objective to yield low cut-in speed and high power level. Using the blade element momentum analysis, the power coefficient curves as functions of tip-speed ratio at various range of wind speeds are obtained for the optimized turbine. Using MATLAB/Simulink tool, a wind energy system, which consists of a wind turbine, permanent magnet synchronous generator and a resistive load, is simulated. The curves obtained from the blade element momentum analysis are used to emulate the wind turbine. The results obtained from the simulation are compared to experimental results. It is noticed that the wind turbine may be optimized to harvest more energy.


Author(s):  
M. R. Luhur ◽  
J. Peinke ◽  
M. Kühn ◽  
M. Wächter

The paper presents a stochastic approach to estimate the aerodynamic forces with local dynamics on wind turbine blades in unsteady wind inflow. This is done by integrating a stochastic model of lift and drag dynamics for an airfoil into the aerodynamic simulation software AeroDyn. The model is added as an alternative to the static table lookup approach in blade element momentum (BEM) wake model used by AeroDyn. The stochastic forces are obtained for a rotor blade element using full field turbulence simulated wind data input and compared with the classical BEM and dynamic stall models for identical conditions. The comparison shows that the stochastic model generates additional extended dynamic response in terms of local force fluctuations. Further, the comparison of statistics between the classical BEM, dynamic stall, and stochastic models' results in terms of their increment probability density functions (PDFs) gives consistent results.


Sign in / Sign up

Export Citation Format

Share Document