blade element momentum theory
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 26)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
N. Asmuin ◽  
◽  
Basuno B. ◽  
M.F. Yaakub ◽  
N.A. Nor Salim ◽  
...  

The present work uses the method of Blade Element Momentum Theory as suggested by Hansen. The method applied to three blade models adopted from Rahgozar S. with the airfoil data used the data provided by Wood D. The wind turbine performance described in term of the thrust coefficient C_T, torque coefficient C_Q and the power coefficient C_p . These three coefficient can be deduced from the Momentum theory or from the Blade element Theory(BET). The present work found the performance coefficient derived from the Momentum theory tent to over estimate. It is suggested to used the BET formulation in presenting these three coefficients. In overall the Blade Element Momentum Theory follows the step by step as described by Hansen work well for these three blade models. However a little adjustment on the blade data is needed. To the case of two bladed horizontal axis wind


2021 ◽  
pp. 1-16
Author(s):  
Ojing Siram ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Abstract The small-scale horizontal-axis wind turbines (SHAWTs) have emerged as the promising alternative energy resource for the off-grid electrical power generation. These turbines primarily operate at low Reynolds number, low wind speed, and low tip speed ratio conditions. Under such circumstances, the airfoil selection and blade design of a SHAWT becomes a challenging task. The present work puts forward the necessary steps starting from the aerofoil selection to the blade design and analysis by means of blade element momentum theory (BEMT) for the development of four model rotors composed of E216, SG6043, NACA63415, and NACA0012 airfoils. This analysis shows the superior performance of the model rotor with E216 airfoil in comparison to other three models. However, the subsequent wind tunnel study with the E216 model, a marginal drop in its performance due to mechanical losses has been observed.


2021 ◽  
Vol 2 (5) ◽  
pp. 6739-6753
Author(s):  
Tiburcio Fernández Roque ◽  
Braulio Vera García ◽  
José Arturo Correa Arredondo ◽  
Jorge Sandoval Lezama ◽  
Alejandro Mejía Carmona

En este trabajo se propone una corrección empírica por número de Mach a la teoría combinada para hélices y se describe el programa de cómputo desarrollado para determinar el comportamiento de la misma. El programa requiere como datos de entrada la geometría de la hélice y los coeficientes aerodinámicos en función del número de Mach de los perfiles de la pala de la hélice. Éste calcula los coeficientes aerodinámicos y las velocidades inducidas de cada elemento de pala empleando la teoría combinada, corrige los coeficientes aerodinámicos por efecto de compresibilidad y calcula la eficiencia, así como los coeficientes de tracción y de potencia de la hélice para diferentes velocidades de avance y, finalmente, los presenta en forma gráfica. Se observa que los resultados obtenidos con la teoría combinada corregida por número de Mach fueron satisfactorios ya que se aproximan más a los resultados experimentales que la teoría combinada simple.   This work proposes an empirical correction by Mach number to the BEM (Blade-Element Momentum) Theory for propellers and describes the software developed to determine the behavior of it. The input for the software is the geometry of the propeller and the aerodynamic coefficient in function of the Mach number for the airfoils used for the propeller chosen. The software calculates the aerodynamic coefficients and the induced velocities at each station of the blade of the propeller using the BEM theory, then corrects these coefficients by the effect of compressibility and calculates the efficiency, the traction and power coefficients for a range of forward velocities, and finally presents a graph with the results obtained. We can observe that the results obtain are satisfactory comparing with the experimental results and obtaining lower difference error by this method than with the simple BEM theory.


2021 ◽  
Author(s):  
S. Sadeqi ◽  
S. Rouhi ◽  
N. Xiros ◽  
E. Aktosun ◽  
J. VanZwieten ◽  
...  

Abstract Ocean currents are one of the alternative sources of green, sustainable, and renewable energy that could generate low-cost electric power without any pollution due to the burning of fossil fuels. Due to the density of the water, ocean currents can produce a significant amount of energy even with a very small current velocity field. In this study, a comprehensive performance analysis of 3-blade horizontal-axis Ocean Current Turbine (OCT) is shown to achieve optimal rpm (revolutions per minute) to match environmental conditions in order to harvest the maximum possible energy from OCT in ocean currents. Our approach is to use Blade Element Momentum (BEM) theory in order to estimate hydrodynamic loads for the turbine; specifically, the design of the OCT blades is based on a FX77-W121 type airfoil. We use JavaFoil to analyze and determine hydrodynamic lift and drag coefficients with respect different angles of attack for the hydrofoil profiles in seawater. After validation of blade design characteristics and obtaining the local coefficients of each hydrofoil cross-sections, we transfer them to our in-house-developed Blade Element Momentum Theory (BEM) code in order to achieve the estimation of performance analysis of the OCT in order to get maximum power and ideal torque and thrust. This performance analysis with BEM model of the OCT is an important step for further analysis due to having different incoming flow speeds in actual time-varying sea conditions. Indeed, the OCT will encounter different incoming ocean current speeds during operation. Therefore, this approach is used to get an accurate brake power estimate of the OCT in different operational current speeds. In addition, this performance analysis of the OCT is going to be utilized in designing and developing a test model for the physical towing tank experiment for later investigation.


Author(s):  
Tushar Sharma ◽  
Santanu Choudhury ◽  
V Murari ◽  
KK Shukla

The advent of wind turbines has enabled mankind to utilize renewable energy sources for the development of power. The blade being the most crucial part and the design of the same remains a challenge since it is subjected to dynamic loads due to the rotation of the blade along with unsteady wind velocity. The prediction of the dynamic wind loads acting on the blade is a difficult task and thus this has been analyzed in the present work. Two different approaches have been proposed to predict accurately the variation of the wind loads acting on the rotor using the unsteady blade element momentum theory. The effect of gravity has also been accounted for in computing the response of the structure. The effect of the position of shear web and the number of shear webs on the response of the structure has also been analyzed in the present work.


2021 ◽  
Author(s):  
Devin F. Barcelos

A higher-order potential flow method is adapted for the aerodynamic performance prediction of small rotors used in multirotor unmanned aerial vehicles. The method uses elements of distributed vorticity which results in numerical robustness with both a prescribed and relaxed wake representation. The radial loading and wake shapes of a rotor in hover were compared to experiment to show strong agreement for three disk loadings. The advancing flight performance prediction of a single rotor was compared to a single rotor was compared to a blade element momentum theory based approach and to experiment. Comparison showed good thrust and power agreement with experiment across a range of advance ratios and angles of attack. Prediction in descending flights showed improvements in comparison to the blade element momentum theory approach. The model was extended to a quadrotorm configuration showing the differences associated to vehicle orientation and rotor rotational direction.


2021 ◽  
Author(s):  
Devin F. Barcelos

A higher-order potential flow method is adapted for the aerodynamic performance prediction of small rotors used in multirotor unmanned aerial vehicles. The method uses elements of distributed vorticity which results in numerical robustness with both a prescribed and relaxed wake representation. The radial loading and wake shapes of a rotor in hover were compared to experiment to show strong agreement for three disk loadings. The advancing flight performance prediction of a single rotor was compared to a single rotor was compared to a blade element momentum theory based approach and to experiment. Comparison showed good thrust and power agreement with experiment across a range of advance ratios and angles of attack. Prediction in descending flights showed improvements in comparison to the blade element momentum theory approach. The model was extended to a quadrotorm configuration showing the differences associated to vehicle orientation and rotor rotational direction.


2021 ◽  
Author(s):  
Carlos Ferreira ◽  
Wei Yu ◽  
Arianna Salla ◽  
Axelle Vire

Abstract. Floating Offshore Wind Turbines may experience large surge motions which, when faster than the local wind speed, cause rotor-wake interaction. Previous research hypothesised that this phenomena can result in a turbulent wake state or even a vortex ring state, invalidating the Actuator Disc Momentum Theory and the use of the Blade Element Momentum Theory. We challenge this hypothesis and demonstrate that the Actuator Disc Momentum Theory is valid and accurate in predicting the induction at the actuator in surge, even for large and fast motions. To achieve this, we derive a dynamic inflow model which mimics the vorticity-velocity system and the effect of the motion. The predictions of the model are compared against results from other authors and from a semi-free wake vortex-ring model. The results show that the surge motion and rotor-wake interaction do not cause a turbulent wake state or vortex ring state, and that the application of Actuator Disc Momentum Theory and Blade Element Momentum Theory is valid and accurate, when correctly applied in an inertial reference frame. The results show excellent agreement in all cases. The proposed dynamic inflow model includes an adaptation for highly loaded flow and it is accurate and simple enough to be easily implemented in most Blade Element Momentum models.


Sign in / Sign up

Export Citation Format

Share Document