Near Zero Emission Power Plants as Future CO2 Control Technologies

Author(s):  
P. Mathieu
Energy Policy ◽  
2009 ◽  
Vol 37 (2) ◽  
pp. 669-679 ◽  
Author(s):  
Andreas Poullikkas ◽  
Ioannis Hadjipaschalis ◽  
Costas Christou

Author(s):  
Muzafar Hussain ◽  
Ahmed Abdelhafez ◽  
Medhat A. Nemitallah ◽  
Mohamed A. Habib

Abstract The stable and flexible micromixer (MM) gas-turbine technology is coupled with hydrogen (H2) enrichment to present an oxy-methane combustor that can sustain highly diluted flames for application in the Allam cycle for zero-emission power production. MMs have never been tested under oxy-fuel conditions, which highlights the novelty of the present study. The operability window was quantified over ranges of fuel hydrogen fraction (HF) and oxidizer oxygen fraction OF. The MM showed superior stability, allowing for reducing OF down to 21% (by vol.) without H2 enrichment, which satisfies the dilution requirements (23%) of the primary reaction zone within the Allam-cycle combustor. By comparison, swirl-based burners from past studies exhibited a ∼30% minimum threshold. Enriching the fuel with H2 boosted flame stability and allowed for reducing OF further down to a record-low value of 13% at HF = 65% (by vol.) in fuel mixture. Under these highly diluted conditions, the adiabatic flame temperature is 990°C (1800°F), which is substantially lower than the lean blowout limit of most known technologies of lean premixed air-fuel combustion in gas-turbine applications. The results also showed that H2 enrichment has minimal effect on the adiabatic flame temperature and combustor power density (MW/m3/atm), which facilitates great operational flexibility in adjusting HF to sustain flame stability without influencing the Allam cycle peak temperature or affecting the turbine health. MM combustion with H2 enrichment is thus a recommended technology for controlled-emission, fuel/oxidizer-flexible combustion in gas turbines.


1998 ◽  
Vol 7 (4) ◽  
pp. 34-38
Author(s):  
Anita Lloyd Spetz ◽  
Peter Tobias ◽  
Lars-Gunnar Ekedahl ◽  
Per Mårtensson ◽  
Ingemar Lundström

Consideration of environmental issues is constantly growing. This brings about a potential market for more sophisticated control of emissions from automobiles and more advanced on-board diagnosis. There is also a growing interest in zero emission power plants and in stricter regulation of other emission sources in industry. One of the important prerequisites for this development is the existence of reliable chemical sensors for combustion control.


2021 ◽  
Author(s):  
Muzafar Hussain ◽  
Mohammed Abdulaziz Mustafa Habib ◽  
Ahmed Abdelhafez Hasanein Abdelhafez ◽  
Medhat Ahmed Nemitallah

2021 ◽  
Vol 214 ◽  
pp. 286-293
Author(s):  
Grzegorz Wiciak ◽  
Krzysztof Grzywnowicz ◽  
Leszek Remiorz ◽  
Katarzyna Janusz-Szymańska

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2115
Author(s):  
Mostafa Abdollahi ◽  
Jose Ignacio Candela ◽  
Andres Tarraso ◽  
Mohamed Atef Elsaharty ◽  
Elyas Rakhshani

Nowadays, modern power converters installed in renewable power plants can provide flexible electromechanical characteristics that rely on the developed control technologies such as Synchronous Power Controller (SPC). Since high renewable penetrated power grids result in a low-inertia system, this electromechanical characteristic provides support to the dynamic stability of active power and frequency in the power generation area. This goal can be achieved through the proper tuning of virtual electromechanical parameters that are embedded in the control layers of power converters. In this paper, a novel mathematical pattern and strategy have been proposed to adjust dynamic parameters in Renewable Static Synchronous Generators controlled by SPC (RSSG-SPC). A detailed dynamic modeling was obtained for a feasible design of virtual damping coefficient and virtual moment of inertia in the electrometrical control layer of RSSG-SPC’s power converters. Mathematical solutions, modal analysis outcomes, time-domain simulation results, and real-time validations of the test in IEEE-14B benchmark confirm that the proposed method is an effective procedure for the dynamic design of RSSG-SPC to provide these dynamic stability supports in grid connection.


Sign in / Sign up

Export Citation Format

Share Document