Male Mice Receiving Very Low Doses of Ionizing Radiation Transmit an Embryonic Cell Proliferation Disadvantage to their Progeny Embryos

Author(s):  
Lynn M. Wiley
1984 ◽  
Vol 23 (02) ◽  
pp. 87-91 ◽  
Author(s):  
K. Flemming

SummaryIn the beginning of medical radiology, only the benefit of ionizing radiation was obvious, and radiation was handled and applied generously. After late effects had become known, the radiation exposure was reduced to doses following which no such effects were found. Thus, it was assumed that one could obtain an optimal medical benefit without inducing any hazard. Later, due to experimental findings, hypotheses arose (linear dose-effect response, no time factor) which led to the opinion that even low and lowest radiation doses were relevant for the induction of late effects. A radiation fear grew, which was unintentionally strengthened by radiation protection decrees: even for low doses a radiation risk could be calculated. Therefore, it was believed that there could still exist a radiation hazard, and the radiation benefit remained in question. If, however, all presently known facts are considered, one must conclude that large radiation doses are hazardous and low doses are inefficient, whereas lowest doses have a biopositive effect. Ionizing radiation, therefore, may cause both, hazard as well as benefit. Which of the two effects prevails is determined by the level of dose.


DNA Repair ◽  
2013 ◽  
Vol 12 (7) ◽  
pp. 508-517 ◽  
Author(s):  
Ingrid Nosel ◽  
Aurélie Vaurijoux ◽  
Joan-Francesc Barquinero ◽  
Gaetan Gruel

1992 ◽  
Vol 3 (Supplement) ◽  
pp. 42
Author(s):  
J J BORRAS-VALLS ◽  
A SALVADOR ◽  
V M SIMON
Keyword(s):  

2020 ◽  
Author(s):  
Sara Simonini ◽  
Marian Bemer ◽  
Stefano Bencivenga ◽  
Valeria Gagliardini ◽  
Nuno D. Pires ◽  
...  

Establishing the body plan of a multicellular organism relies on precisely orchestrated cell divisions coupled with pattern formation. In animals, cell proliferation and embryonic patterning are regulated by Polycomb group (PcG) proteins that form various multisubunit complexes (Grossniklaus and Paro, 2014). The evolutionary conserved Polycomb Repressive Complex 2 (PRC2) trimethylates histone H3 at lysine 27 (H3K27me3) and comes in different flavors in the model plant Arabidopsis thaliana (Förderer et al., 2016; Grossniklaus and Paro, 2014). The histone methyltransferase MEDEA (MEA) is part of the FERTILIZATION INDEPENDENT SEED (FIS)-PRC2 required for seed development4. Although embryos derived from mea mutant egg cells show morphological abnormalities (Grossniklaus et al., 1998), defects in the development of the placenta-like endosperm are considered the main cause of seed abortion (Kinoshita et al., 1999; Scott et al., 1998), and a role of FIS-PRC2 in embryonic patterning was dismissed (Bouyer et al., 2011; Leroy et al., 2007). Here, we demonstrate that endosperm lacking MEA activity sustains normal embryo development and that embryos derived from mea mutant eggs abort even in presence of a wild-type endosperm because MEA is required for embryonic patterning and cell lineage determination. We show that, similar to PcG proteins in mammals, MEA regulates embryonic growth by repressing the transcription of core cell cycle components. Our work demonstrates that Arabidopsis embryogenesis is under epigenetic control of maternally expressed PcG proteins, revealing that PRC2 was independently recruited to control embryonic cell proliferation and patterning in animals and plants.


Sign in / Sign up

Export Citation Format

Share Document