In-Situ Ultrasonic Characterization of Failure Strength of Fiber-Matrix Interface in Metal Matrix Composites Reinforced by SCS Series Fibers

Author(s):  
Theodore E. Matikas ◽  
Prasanna Karpur ◽  
Nicholas J. Pagano ◽  
Shoufeng Hu ◽  
Leon Shaw
1993 ◽  
Vol 8 (5) ◽  
pp. 1158-1168 ◽  
Author(s):  
Ernest L. Hall ◽  
Ann M. Ritter

The structure and mechanical behavior of the fiber/matrix interface in Ti alloy/SCS-6 SiC metal matrix composites were studied. In these composites the interface region consists of a fiber-coating region and a metal reaction zone between the SiC fiber body and the metal matrix. The fiber coating consists of a number of zones or layers which are comprised of cubic SiC particles in a turbostratic carbon matrix. Some ambiguity remains, concerning the number of distinct layers and the size, shape, and density of the SiC particles. The effect of composite fabrication and heat treatment on the coating structure is relatively small. Studies of the metal reaction zone adjacent to the fiber in Ti alloy/SCS-6 SiC MMC's have shown that a number of discrete zones or layers form. Nearest the fiber, a zone of cubic TiC occurs, with increasing grain size with distance from the fiber. Nearest the metal matrix, a zone of Ti5Si3 forms. In high Al content alloys, an intermediate zone forms that consists of Ti2AlC or Ti3AlC. The fiber/matrix interface plays an important role during transverse tensile loading of these composites. The tensile behavior is controlled by debonding at the interface, followed by deformation of the matrix ligaments. Replica observations show that the debonding initiates and propagates within the coating layers, but is not confined to a single layer interface.


2014 ◽  
Vol 984-985 ◽  
pp. 280-284 ◽  
Author(s):  
S.A. Kori ◽  
S.L. Biradar ◽  
Virupaxi Auradi

Current work, aims at preparation and characterization of Al-Al3Ti in-situ metal matrix composites with varying percentage of in-situ Al3Ti (3 and 5%) reinforcement. The composites were prepared by the salt route involving reaction of commercial purity aluminum (99.7%) and potassium titanium flourate halide (K2TiF6) salt at a reaction temperature of 800°C and with 60min. holding time. The prepared composites were subjected to microstructural studies using Scanning Electron Microscope. Further, the work aims at evaluating mechanical properties of the prepared composites as per ASTM standards. Microstructural characterization using SEM revealed blocky morphology of Al3Ti intermetallics with fairly homogeneous distribution. Insitu Al-Al3Ti composites have shown better mechanical properties when compared to the unreinforced Al matrix.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4457-4462 ◽  
Author(s):  
OH-HEON KWON ◽  
JI-WOONG KANG

High performance composite reinforced with unidirectional continuous fibers are used in applications requiring high stiffness, high strength and light weight. Because of the high stiffness of the reinforced continuous fiber, the longitudinal performance of such unidirectional composites is greatly enhanced, but their transverse performance is so weak. The nature of the fiber/matrix interface is one of the important factors which determine the unique properties of the fiber reinforced metal matrix composites (MMCs). So, the current study is focused on the fracture behavior of the interface. Both stress state of the interface and crack parameters of the perpendicular crack to the interface for unidirectional fiber reinforced metal matrix composites under the transverse loading are investigated by using elastic-plastic finite element analysis. Different fiber volume fractions (5~60%) and arrangement (square and hexagon) of fibers were studied numerically. The fiber/matrix interface was treated as multi thin layer with different material properties. The fiber is assumed as linear elastic SiC and the matrix is assumed as elastic-plastic Ti -15-3 Titanium alloy. The results show that the stress distributions of the multi thin layer model have much less changes compared with a single interface case. And the properties of the interfacial zone affect the stress distribution, crack behavior and mechanical behavior of the fiber reinforced metal matrix composite.


Sign in / Sign up

Export Citation Format

Share Document