Expert Systems and Neural Networks

1995 ◽  
pp. 39-56 ◽  
Author(s):  
Larry R. Medsker
2020 ◽  
Vol 14 (1) ◽  
pp. 34-42
Author(s):  
A. VAZHYNSKYI ◽  
◽  
S. ZHUKOV ◽  

Approaches and algorithms for processing experimental data and data obtained as a result of using modern means of measuring equipment, selecting diagnostic parameters, pattern recognition, which constitute the methodological basis for developing methods and designing tools for creating a service system for complex industrial facilities based on predicting their performance and residual life are described in submitted article. Along with classical methods, methods based on using the full potential of the modern elemental base of microprocessor technology and the use of artificial neural networks, machine learning, and "big data" are discovered. The given examples can serve as the basis for constructing a methodology for the application of the considered approaches for organizing predictive maintenance of complex industrial equipment. An analytical review of a number of scientific publications showed that the creation of new automated diagnostic systems that can increase fault tolerance and extend the life of sophisticated modern power equipment is extremely relevant. For this, various approaches are applied, based on mathematical models, expert systems, artificial neural networks and other algorithms. Summarizing the results of scientific publications, it can be argued that the implementation of a systematic approach to the organization of repair service at the enterprise requires a comprehensive solution to the following urgent problems: • monitoring is formulated as the task of interrogating sensors and collecting information necessary for further analysis; • diagnostics, it is solved as tasks of identifying informative signs with further detection and classification of failures and anomalies in data sets; • improving the accuracy of algorithms aimed at pattern recognition; • condition forecasting is the task of assessing the current and accumulated readings of monitoring systems for making decisions regarding either a specific element of the complex or the facilities. Thus, modern technology make it possible to arrange arbitrarily complex algorithms. However, to use the full potential that artificial neural networks, expert systems, and classical methods for identifying and diagnosing equipment it is necessary to have a conceptual development of the foundations of building systems for organizing maintenance and repair of complex energy equipment


2019 ◽  
Vol 26 ◽  
pp. 36-46
Author(s):  
S. KONOVALOV ◽  

In the proposed article, various methods of constructing an artificial neural network as one of the components of a hybrid expert system for diagnosis were investigated. A review of foreign literature in recent years was conducted, where hybrid expert systems were considered as an integral part of complex technical systems in the field of security. The advantages and disadvantages of artificial neural networks are listed, and the main problems in creating hybrid expert systems for diagnostics are indicated, proving the relevance of further development of artificial neural networks for hybrid expert systems. The approaches to the analysis of natural language sentences, which are used for the work of hybrid expert systems with artificial neural networks, are considered. A bulletin board is shown, its structure and principle of operation are described. The structure of the bulletin board is divided into levels and sublevels. At sublevels, a confidence factor is applied. The dependence of the values of the confidence factor on the fulfillment of a particular condition is shown. The links between the levels and sublevels of the bulletin board are also described. As an artificial neural network architecture, the «key-threshold» model is used, the rule of neuron operation is shown. In addition, an artificial neural network has the property of training, based on the application of the penalty property, which is able to calculate depending on the accident situation. The behavior of a complex technical system, as well as its faulty states, are modeled using a model that describes the structure and behavior of a given system. To optimize the data of a complex technical system, an evolutionary algorithm is used to minimize the objective function. Solutions to the optimization problem consist of Pareto solution vectors. Optimization and training tasks are solved by using the Hopfield network. In general, a hybrid expert system is described using semantic networks, which consist of vertices and edges. The reference model of a complex technical system is stored in the knowledge base and updated during the acquisition of new knowledge. In an emergency, or about its premise, with the help of neural networks, a search is made for the cause and the control action necessary to eliminate the accident. The considered approaches, interacting with each other, can improve the operation of diagnostic artificial neural networks in the case of emergency management, showing more accurate data in a short time. In addition, the use of such a network for analyzing the state of health, as well as forecasting based on diagnostic data using the example of a complex technical system, is presented.


2020 ◽  
Vol 25 (2) ◽  
pp. 7-13
Author(s):  
Zhangozha A.R. ◽  

On the example of the online game Akinator, the basic principles on which programs of this type are built are considered. Effective technics have been proposed by which artificial intelligence systems can build logical inferences that allow to identify an unknown subject from its description (predicate). To confirm the considered hypotheses, the terminological analysis of definition of the program "Akinator" offered by the author is carried out. Starting from the assumptions given by the author's definition, the article complements their definitions presented by other researchers and analyzes their constituent theses. Finally, some proposals are made for the next steps in improving the program. The Akinator program, at one time, became one of the most famous online games using artificial intelligence. And although this was not directly stated, it was clear to the experts in the field of artificial intelligence that the program uses the techniques of expert systems and is built on inference rules. At the moment, expert systems have lost their positions in comparison with the direction of neural networks in the field of artificial intelligence, however, in the case considered in the article, we are talking about techniques using both directions – hybrid systems. Games for filling semantics interact with the user, expanding their semantic base (knowledge base) and use certain strategies to achieve the best result. The playful form of such semantics filling programs is beneficial for researchers by involving a large number of players. The article examines the techniques used by the Akinator program, and also suggests possible modifications to it in the future. This study, first of all, focuses on how the knowledge base of the Akinator program is built, it consists of incomplete sets, which can be filled and adjusted as a result of further iterations of the program launches. It is important to note our assumption that the order of questions used by the program during the game plays a key role, because it determines its strategy. It was identified that the program is guided by the principles of nonmonotonic logic – the assumptions constructed by the program are not final and can be rejected by it during the game. The three main approaches to acquisite semantics proposed by Jakub Šimko and Mária Bieliková are considered, namely, expert work, crowdsourcing and machine learning. Paying attention to machine learning, the Akinator program using machine learning to build an effective strategy in the game presents a class of hybrid systems that combine the principles of two main areas in artificial intelligence programs – expert systems and neural networks.


2012 ◽  
pp. 1404-1416 ◽  
Author(s):  
David Parry

Decision analysis techniques attempt to utilize mathematical data about outcomes and preferences to help people make optimal decisions. The increasing uses of computerized records and powerful computers have made these techniques much more accessible and usable. The partnership between women and clinicians can be enhanced by sharing information, knowledge, and the decision making process in this way. Other techniques for assisting with decision making, such as learning from data via neural networks or other machine learning approaches may offer increased value. Rules learned from such approaches may allow the development of expert systems that actually take over some of the decision making role, although such systems are not yet in widespread use.


The power of genetic algorithms (GAs) and related expert systems such as fuzzy logic, neural networks, and chaos theory and other classifier systems is truly infinite in nature. The above stated procedures are sure to happen in the near future, and there is no chance for it not to occur. GAs, fuzzy logic, neural networks, and chaos theory are all biologically-inspired algorithmic procedures, as they all are linked to the world of biology in some way. Market represents the ideas of traders. In the present environment, the market is driven by the ideas generated by the use of these AI-based expert systems and it is causing huge competition in making profits. This chapter is planned to be a detailed introduction of various popular expert systems such as GAs, neural networks, fuzzy logic, and chaos theory and their usages. Researchers in the past have proved that these computational procedures could have far reaching effects in the stock trading system.


Sign in / Sign up

Export Citation Format

Share Document