RNA Helicase Activity in Translation Initiation in Eukaryotes

1993 ◽  
pp. 221-228
Author(s):  
Arnim Pause ◽  
Nahum Sonenberg
1990 ◽  
Vol 10 (3) ◽  
pp. 1134-1144 ◽  
Author(s):  
F Rozen ◽  
I Edery ◽  
K Meerovitch ◽  
T E Dever ◽  
W C Merrick ◽  
...  

The mechanism of ribosome binding to eucaryotic mRNAs is not well understood, but it requires the participation of eucaryotic initiation factors eIF-4A, eIF-4B, and eIF-4F and the hydrolysis of ATP. Evidence has accumulated in support of a model in which these initiation factors function to unwind the 5'-proximal secondary structure in mRNA to facilitate ribosome binding. To obtain direct evidence for initiation factor-mediated RNA unwinding, we developed a simple assay to determine RNA helicase activity, and we show that eIF-4A or eIF-4F, in combination with eIF-4B, exhibits helicase activity. A striking and unprecedented feature of this activity is that it functions in a bidirectional manner. Thus, unwinding can occur either in the 5'-to-3' or 3'-to-5' direction. Unwinding in the 5'-to-3' direction by eIF-4F (the cap-binding protein complex), in conjunction with eIF-4B, was stimulated by the presence of the RNA 5' cap structure, whereas unwinding in the 3'-to-5' direction was completely cap independent. These results are discussed with respect to cap-dependent versus cap-independent mechanisms of ribosome binding to eucaryotic mRNAs.


1990 ◽  
Vol 10 (3) ◽  
pp. 1134-1144 ◽  
Author(s):  
F Rozen ◽  
I Edery ◽  
K Meerovitch ◽  
T E Dever ◽  
W C Merrick ◽  
...  

The mechanism of ribosome binding to eucaryotic mRNAs is not well understood, but it requires the participation of eucaryotic initiation factors eIF-4A, eIF-4B, and eIF-4F and the hydrolysis of ATP. Evidence has accumulated in support of a model in which these initiation factors function to unwind the 5'-proximal secondary structure in mRNA to facilitate ribosome binding. To obtain direct evidence for initiation factor-mediated RNA unwinding, we developed a simple assay to determine RNA helicase activity, and we show that eIF-4A or eIF-4F, in combination with eIF-4B, exhibits helicase activity. A striking and unprecedented feature of this activity is that it functions in a bidirectional manner. Thus, unwinding can occur either in the 5'-to-3' or 3'-to-5' direction. Unwinding in the 5'-to-3' direction by eIF-4F (the cap-binding protein complex), in conjunction with eIF-4B, was stimulated by the presence of the RNA 5' cap structure, whereas unwinding in the 3'-to-5' direction was completely cap independent. These results are discussed with respect to cap-dependent versus cap-independent mechanisms of ribosome binding to eucaryotic mRNAs.


1994 ◽  
Vol 14 (4) ◽  
pp. 2307-2316 ◽  
Author(s):  
N Méthot ◽  
A Pause ◽  
J W Hershey ◽  
N Sonenberg

eIF-4B is a eukaryotic translation initiation factor that is required for the binding of ribosomes to mRNAs and the stimulation of the helicase activity of eIF-4A. It is an RNA-binding protein that contains a ribonucleoprotein consensus sequence (RNP-CS)/RNA recognition motif (RRM). We examined the effects of deletions and point mutations on the ability of eIF-4B to bind a random RNA, to cooperate with eIF-4A in RNA binding, and to enhance the helicase activity of eIF-4A. We report here that the RNP-CS/RRM alone is not sufficient for eIF-4B binding to RNA and that an RNA-binding region, located between amino acids 367 and 423, is the major contributor to RNA binding. Deletions which remove this region abolish the ability of eIF-4B to cooperate with eIF-4A in RNA binding and the ability to stimulate the helicase activity of eIF-4A. Point mutations in the RNP-CS/RRM had no effect on the ability of eIF-4B to cooperate with eIF-4A in RNA binding but significantly reduced the stimulation of eIF-4A helicase activity. Our results indicate that the carboxy-terminal RNA-binding region of eIF-4B is essential for eIF-4B function and is distinct from the RNP-CS/RRM.


2008 ◽  
Vol 89 (4) ◽  
pp. 994-999 ◽  
Author(s):  
Ming Xiao ◽  
Yan Bai ◽  
Hui Xu ◽  
Xiaolu Geng ◽  
Jun Chen ◽  
...  

A full-length NS3 (NS3F) and a truncated NS3 protein (NS3H) with an RNA helicase domain possess RNA helicase activity. Using an in vitro system with a monocistronic reporter RNA or DNA, containing the CSFV 5′-UTR, we observed that both NS3F and NS3H enhanced internal ribosome entry site (IRES)-mediated and cellular translation in a dose-dependent manner, but NS3 protease (NS3P) that lacks a helicase domain did not. NS3F was stronger than NS3H in promoting both translations. These results showed that viral RNA helicase could promote viral and cellular translation, and higher RNA helicase activity might be more efficient. The NS5B protein, the viral replicase, did not significantly affect the IRES-directed or cellular translation alone. NS5B significantly enhanced the stimulative effect of NS3F on both IRES-mediated and cellular translation, but did not affect that of NS3H or NS3P. This suggests that NS5B and NS3 interact via the protease domain during the enhancement of translation.


2015 ◽  
Vol 35 (17) ◽  
pp. 2918-2931 ◽  
Author(s):  
Yandong Zhang ◽  
Jin You ◽  
Xingshun Wang ◽  
Jason Weber

DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33 but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation, further solidifying its central role in promoting cell growth and proliferation.


Sign in / Sign up

Export Citation Format

Share Document