80s ribosome
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 33)

H-INDEX

33
(FIVE YEARS 4)

Author(s):  
Francesco Di Palma ◽  
Sergio Decherchi ◽  
Fátima Pardo-Avila ◽  
Sauro Succi ◽  
Michael Levitt ◽  
...  

Nature ◽  
2021 ◽  
Author(s):  
Muminjon Djumagulov ◽  
Natalia Demeshkina ◽  
Lasse Jenner ◽  
Alexey Rozov ◽  
Marat Yusupov ◽  
...  

AbstractTranslation of the genetic code into proteins is realized through repetitions of synchronous translocation of messenger RNA (mRNA) and transfer RNAs (tRNA) through the ribosome. In eukaryotes translocation is ensured by elongation factor 2 (eEF2), which catalyses the process and actively contributes to its accuracy1. Although numerous studies point to critical roles for both the conserved eukaryotic posttranslational modification diphthamide in eEF2 and tRNA modifications in supporting the accuracy of translocation, detailed molecular mechanisms describing their specific functions are poorly understood. Here we report a high-resolution X-ray structure of the eukaryotic 80S ribosome in a translocation-intermediate state containing mRNA, naturally modified eEF2 and tRNAs. The crystal structure reveals a network of stabilization of codon–anticodon interactions involving diphthamide1 and the hypermodified nucleoside wybutosine at position 37 of phenylalanine tRNA, which is also known to enhance translation accuracy2. The model demonstrates how the decoding centre releases a codon–anticodon duplex, allowing its movement on the ribosome, and emphasizes the function of eEF2 as a ‘pawl’ defining the directionality of translocation3. This model suggests how eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs undergo large-scale molecular reorganizations to ensure maintenance of the mRNA reading frame during the complex process of translocation.


2021 ◽  
Author(s):  
Ken Ikeuchi ◽  
Nives Ivic ◽  
Jingdong Cheng ◽  
Robert Buschauer ◽  
Yoshitaka Matsuo ◽  
...  

In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by the deubiquitination enzyme Otu2 upon ribosomal subunit recycling. Despite its importance for general efficiency of translation the exact role and structural basis for this specific translational reset are only poorly understood. Here we present biochemical and structural data showing that Otu2 can engage the recycled 40S subunit together with the recycling factors ABCE1 and Tma64 immediately after 60S dissociation for mRNA recycling, and that it dissociates before 48S initiation complex formation. A combined structural analysis of Otu2 and Otu2-40S complexes by X-ray crystallography, AlphaFold2 prediction and cryo-EM revealed how Otu2 can specifically be recruited to the 40S, but not to the 80S ribosome, for removal of the eS7-bound ubiquitin moiety. Here, interactions of the largely helical N-terminal domain of Otu2 to sites that are masked and therefore inaccessible in the 80S ribosome are of crucial importance. Collectively, we provide the structural basis for the Otu2 driven deubiquitination step providing a first mechanistic understanding of this translational reset step during ribosome recycling/(re)initiation.


2021 ◽  
Vol 15 (1) ◽  
pp. 38-52
Author(s):  
Codjo Hountondji ◽  
Jacques H. Poupaert ◽  
Blanche Aguida ◽  
Fulbert K. Agbo Saga ◽  
Joël Pothier ◽  
...  

Background: The majority of scientists, physicians, and healthcare professionals were trained with the paradigm: “antibiotics are for bacteria only !”, because they misunderstood the definition of the ribosome targeting antibiotics. In the context of the current worldwide COVID-19 pandemic, it might be useful to recall as precisely as possible the definition of the word antibiotic and provide evidence that some classes of antibiotics could offer excellent means to counteract viral infections via specific mechanisms. Methods: Molecular modeling and docking studies were used, as well as the tRNAox labeling reaction of the ribosomal protein eL42 in situ on human 80S ribosomes to demonstrate that cycloheximide and its thiosemicarbazone analogues bind to the catalytic Lys-53 residue of the human large subunit ribosomal protein eL42. Results: Comparison of the binding sites for Cycloheximide (CHX) and Sparsomycin (SPS) on the evolutionarily conserved E. coli bL12 and S. cerevisiae eL42 by means of molecular modeling and docking studies showed that: (i) SPS binds in proximity to the catalytic Lys-65 residue of the GANK motif of rp bL12 and to the catalytic Lys-55 residue of the GGQTKP motif of rp eL42; (ii) CHX failed to bind to the GANK motif, while the glutarimide moiety of SPS and CHX was found to make contact with Lys-55 of the GGQTKP motif of rp eL42. Conclusion: In this report, we demonstrate that cycloheximide and its thiosemicarbazone analogues are capable of inhibiting the human 80S ribosomes selectively through their binding to the ε-amino group of the side chain of Lys-53. As a consequence, these small-molecule inhibitors of translation are susceptible to exhibit antiviral activities by preventing the human ribosomes of the SARS-CoV-2 infected cells from synthesizing the viral proteins and enzymes.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4392
Author(s):  
Simone Pellegrino ◽  
Salvatore Terrosu ◽  
Gulnara Yusupova ◽  
Marat Yusupov

Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.


2021 ◽  
Vol 22 (13) ◽  
pp. 6973
Author(s):  
Alberto Mills ◽  
Federico Gago

eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.


2021 ◽  
Author(s):  
Francesco Di Palma ◽  
Sergio Decherchi ◽  
Fátima Pardo-Avila ◽  
Sauro Succi ◽  
Michael Levitt ◽  
...  

The ribosome stalling mechanism is a crucial biological process; yet its atomistic underpinning is still elusive. In this framework, the XBP1u translational arrest peptide (AP) plays a central role in regulating the Unfolded Protein Response (UPR) in eukaryotic cells. Here, we report multi-microseconds all atom molecular dynamics simulations designed to probe the interactions between the XBP1u AP and the mammalian ribosome exit tunnel, both for the wildtype AP and for four mutant variants of different arrest potency. Enhanced sampling simulations allow investigating the AP release process of the different variants shedding light on this complex mechanism. The present outcomes are in qualitative/quantitative agreement with available experimental data. In conclusion, we provide an unprecedented atomistic picture of this biological process and clear-cut insights into the key AP-ribosome interactions.


Blood ◽  
2021 ◽  
Author(s):  
Sangmoon Lee ◽  
Chang Hoon Shin ◽  
Jawon Lee ◽  
Seong Dong Jeong ◽  
Che Ry Hong ◽  
...  

Shwachman-Diamond syndrome (SDS; OMIM: #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood. Here we present three unrelated Korean SDS patients that carry biallelic pathogenic variants in EFL1 with biased allele frequencies, resulting from a bone marrow-specific somatic uniparental disomy (UPD) in chromosome 15. The recombination events generated cells that were homozygous for the relatively milder variant, allowing for the evasion of catastrophic physiological consequences. Still, the milder EFL1 variant was solely able to impair 80S ribosome assembly and induce SDS features in cell line and animal models. The loss of EFL1 resulted in a pronounced inhibition of terminal oligo-pyrimidine element-containing ribosomal protein transcript 80S assembly. Therefore, we propose a more accurate pathogenesis mechanism of EFL1 dysfunction that eventually leads to aberrant translational control and ribosomopathy.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Fatima Alghoul ◽  
Schaeffer Laure ◽  
Gilbert Eriani ◽  
Franck Martin

During embryogenesis, Hox mRNA translation is tightly regulated by a sophisticated molecular mechanism that combines two RNA regulons located in their 5’UTR. First, an internal ribosome entry site (IRES) enables cap-independent translation. The second regulon is a translation inhibitory element or TIE, which ensures concomitant cap-dependent translation inhibition. In this study, we deciphered the molecular mechanisms of mouse Hoxa3 and Hoxa11 TIEs. Both TIEs possess an upstream open reading frame (uORF) that is critical to inhibit cap-dependent translation. However, the molecular mechanisms used are different. In Hoxa3 TIE, we identify an uORF which inhibits cap-dependent translation and we show the requirement of the non-canonical initiation factor eIF2D for this process. The mode of action of Hoxa11 TIE is different, it also contains an uORF but it is a minimal uORF formed by an uAUG followed immediately by a stop codon, namely a ‘start-stop’. The ‘start-stop’ sequence is species-specific and in mice, is located upstream of a highly stable stem loop structure which stalls the 80S ribosome and thereby inhibits cap-dependent translation of Hoxa11 main ORF.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S25-S25
Author(s):  
Yuriy Zgadzay ◽  
Olga Kolosova ◽  
Artem Stetsenko ◽  
Konstantin Usachev ◽  
Shamil Validov ◽  
...  

Background: The fungus Candida albicans is one of the most common fungal human pathogens, causing numerous mucocutaneous infections. About 80% of the world population is colonized with this pathogen, and in many cases, it does not reveal its pathogenic properties. However in the events when the suppression of normal bacterial flora occurs, e.g. as a consequence of chemotherapy or antibiotics treatment, multi-resistant strains of Candida albicans can rapidly colonize the host organism and prevent the normal flora recovery, which in turn can trigger many other diseases especially in the case of immunocompromised patients. Methods: We used an integrated structural biology approach based on the single-particle cryo-EM reconstruction and macromolecule X-ray crystallography. Results: One of the most promising targets for antibiotic action is a protein synthesis apparatus and ribosomes in the cell. In this study, we characterized structurally the protein synthesis machinery of Candida albicans using the state-of-the-art techniques of single-particle Cryo-electron microscopy and macromolecular X-ray crystallography. Conclusion: We obtained the 2.4 Å resolution structure of the 80S ribosome from Candida albicans and the 4.2 Å resolution structure of the vacant C. albicans ribosome by X-ray crystallography. We believe that this study will shed light on mechanisms of antimicrobial resistance in C. albicans and improve candidiasis treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document