Fiber Pullout and Fracture Energy of C-Fiber/C-Matrix Composites

1992 ◽  
pp. 83-95 ◽  
Author(s):  
Tatsuya Miyajima ◽  
Mototsugu Sakai
Author(s):  
C. A. Nannetti ◽  
A. Borello ◽  
D. A. de Pinto ◽  
D. Carbone ◽  
A. Licciulli ◽  
...  

2012 ◽  
Vol 217-219 ◽  
pp. 67-70
Author(s):  
Yi Xia ◽  
Hong Fang Li

Tensile behavior of C fiber reinforced amorphous SiCN ceramic matrix composites (C/SiCN ) were investigated by tensile machine. The microstructure morphologies were observed by scanning electron microscope. The results indicate that the tensile stress-strain curves of C/SiCN composites dispaly typical elastic deformation and cracks propagation stages. The 1500°C pre-sabilization treatment of C/SiCN in vacuum facilitates room temperature tensile stress growth. The higher treated temperature such as 1900°C is yet opposite. The reasons were attributed to thermal stress relaxation of C/SiCN after pre-stabilization treatment in vacuum.


2001 ◽  
Vol 3 (6) ◽  
pp. 423-427 ◽  
Author(s):  
R. Reinicke ◽  
K. Friedrich ◽  
W. Beier ◽  
R. Liebald

1992 ◽  
Vol 45 (8) ◽  
pp. 377-389 ◽  
Author(s):  
L. K. Jain ◽  
R. C. Wetherhold

A micromechanical model based on probabilistic principles is proposed to determine the effective fracture toughness increment and the bridging stress-crack opening displacement relationship for brittle matrix composites reinforced with short, poorly bonded fibers. Emphasis is placed on studying the effect of fiber extensibility on the bridging stress and the bridging fracture energy, and to determine its importance in cementitious matrix composites. Since the fibers may not be in an ideal aligned or random state, the analysis is placed in sufficiently general terms to consider any prescribable fiber orientation distribution. The model incorporates the snubbing effect observed during pull-out of fibers inclined at an angle to the crack face normal. In addition, the model allows the fibers to break; any fiber whose load meets or exceeds a single-valued failure stress will fracture rather than pull out. The crack bridging results may be expressed as the sum of results for inextensible fibers and an additional term due to fiber extensibility. An exact analysis is given which gives the steady-state bridging toughness G directly, but presents a non-linear problem for the bridging stress-crack opening (σb – δ) relationship. An approximate analysis is then presented which gives both G and σb – δ directly. To illustrate the effect of extensibility on bridging stress and fracture energy increment due to bridging fibers, a comparison with the inextensible fiber case is provided. It is found that effect of extensibility on fracture energy is negligible for common materials systems. However, extensibility may have a significant effect on the bridging stress-crack opening relationship. The effect of other physical and material parameters such as fiber length, fiber orientation and snubbing friction coefficient is also studied.


2000 ◽  
Vol 15 (10) ◽  
pp. 2228-2237 ◽  
Author(s):  
Rhonda L. Callender ◽  
Andrew R. Barron

SiC, carbon, and Kevlart® fibers were coated with carboxylate–alumoxane nanoparticles and their calcium-, lanthanum-, and yttrium-doped analogs; firing to 1400 °C formed uniform aluminate coatings. Optimum processing sequences were determined. Both carboxylate–alumoxane- and ceramic-coated fibers were examined by field emission scanning electron microscopy, microprobe analysis, and optical microscopy. Coatings produced were stable to thermal cycling under air at 1400 °C. Fiber-reinforced ceramic matrix composites were prepared and results from 3-point bend tests for carbon/Kevlar®-fabric-reinforced ceramic matrix composites (CMCs) and carbon-fiber-reinforced CMCs were determined. Flexure strength for carbon-fiber- and carbon/Kevlart®-fiber-reinforced alumina CMCs was determined.


1990 ◽  
Vol 112 (4) ◽  
pp. 502-506 ◽  
Author(s):  
R. C. Wetherhold

Adding brittle fibers to a brittle matrix can create a composite that is substantially tougher than the monolithic matrix by providing mechanisms for energy dissipation during crack propagation. A model based on probabilistic principles has been developed to calculate the increased energy absorption during fracture for a brittle matrix reinforced with very short, poorly bonded fibers. This model, previously developed for planar fiber orientations, is extended to consider the three-dimensional fiber orientations that may occur during composite fabrication. The fiber pull-out energy is assumed to dominate other fracture energy terms, and simple parametric studies are performed to demonstrate the effect of fiber orientation, fiber length, fiber diameter, and fiber-matrix interfacial shear stress. In particular, the fiber orientation effects may be grouped into an effective “orientation parameter.” The model predictions compare satisfactorily with the limited data available, and offer a conceptual framework for considering the effect of changing the physical variables on the fracture energy of the composite.


Carbon ◽  
2000 ◽  
Vol 38 (6) ◽  
pp. 831-838 ◽  
Author(s):  
K.A. Appiah ◽  
Z.L. Wang ◽  
W.J. Lackey

Sign in / Sign up

Export Citation Format

Share Document