interfacial bond strength
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 32)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 845
Author(s):  
Aman Kumar ◽  
Harish Chandra Arora ◽  
Krishna Kumar ◽  
Mazin Abed Mohammed ◽  
Arnab Majumdar ◽  
...  

Fibre-reinforced cement mortar (FRCM) has been widely utilised for the repair and restoration of building structures. The bond strength between FRCM and concrete typically takes precedence over the mechanical parameters. However, the bond behaviour of the FRCM–concrete interface is complex. Due to several failure modes, the prediction of bond strength is difficult to forecast. In this paper, effective machine learning models were employed in order to accurately predict the FRCM–concrete bond strength. This article employed a database of 382 test results available in the literature on single-lap and double-lap shear experiments on FRCM–concrete interfacial bonding. The compressive strength of concrete, width of concrete block, FRCM elastic modulus, thickness of textile layer, textile width, textile bond length, and bond strength of FRCM–concrete interface have been taken into consideration with popular machine learning models. The paper estimates the predictive accuracy of different machine learning models for estimating the FRCM–concrete bond strength and found that the GPR model has the highest accuracy with an R-value of 0.9336 for interfacial bond strength prediction. This study can be utilising in the estimation of bond strength to minimise the experimentation cost in minimum time.


Author(s):  
John K. Makunza ◽  
G. Senthil Kumaran

Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of concrete such as compressive and tensile strengths. Concrete is strong in compression but weak in tension and is a brittle material. In the construction industry, strength, durability and cost are among the major factors for selecting the suitable construction materials. During this investigation, the mechanical properties of sisal fibers reinforced concrete (SFRC) were assessed namely, flexural strength, tensile strength ad interfacial bond strength. The said properties were assessed in two types of reinforcement namely, randomly oriented sisal fibers and parallel oriented sisal fibers reinforcement. In both cases the sisal fibers were varied in volume fractions so as to establish the optimum value. The mechanical properties of flexural and tensile strengths were found to increase considerably with increasing fiber volume fractions until an optimum volume fraction is reached, thereafter, the strengths were found to decrease continuously. The prominent increment of 32.4% in flexural strength at fiber volume fraction of 2.0% parallel reinforced fiber concrete composite was observed. There was very small increment on both flexural and tensile strength for randomly oriented chopped sisal fibers reinforced concrete (SFRC). The Interfacial bond strength was found to be 0.12 N/mm2 and was observed to be prominent for chopped sisal fibers reinforced concrete specimens tested for flexural strength. During failure, fiber pull-out was observed and the composite was observed to behave in a ductile manner whereby the fibers were able to carry more load while full fracture had occurred on the specimen. The water absorption capacity of the SFRC was found to increase with increasing sisal fiber volume fraction.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Zechen Yao ◽  
Renfeng Yang ◽  
Jian Kang ◽  
Zhigang Zhang

In this paper, the applicability of the elastic recovery (resilience) experiment for asphalt-rubber (AR) binders has been quantitatively assessed. The mechanical model, based on the viscoelastic constitutive relation and particle inclusion theory, was developed. The interfacial detachment between crumb rubber (CR) particles and asphalt caused by stress concentration was analyzed with Weibull statistical equations. Based on the road roughness excitation, the vehicle-road coupling vibration model was established to analyze the impact of vehicle loading on road surface deformation. AR binders with different CR particle sizes were assessed using scanning electron microscope (SEM) imaging and prepared for testing the elastic recovery (resilience). The results showed that the greater internal stress caused by the longer stretch length of AR binders in the elastic recovery experiment was ten times higher than that obtained from the resilience experiment, leading to the interfacial detachment between asphalt and the CR particles. Hence, the elastic property of some of the CR particles with high modulus was not reflected, resulting in the test values being lower than actual values. With the reduction of CR particle size, the interfacial detachment was improved in the elastic recovery experiment due to intense material interchange and the enhancement of interfacial bond strength. The millimeter-scale compression deformation of the AR binder in the resilience experiment was closer to the actual deformation of the road surface. The experimental time of resilience (120 min) has been reported less than that for elastic recovery (200 min–230 min). This study shows that the resilience experiment has a significant advantage in assessing the elastic property of the AR binder.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4260
Author(s):  
Ziling Shen ◽  
Zhi Ye ◽  
Kailin Li ◽  
Chusheng Qi

Wood–plastic composites (WPC) with good mechanical and physical properties are desirable products for manufacturers and customers, and interfacial bond strength is one of the most critical factors affecting WPC performance. To verify that a higher interfacial bond strength between wood and thermoplastics improves WPC performance, wood veneer–thermoplastic composites (VPC) and oriented strand–thermoplastic composites (OSPC) were fabricated using hot pressing. The effects of the coupling agent (KH550 or MDI) and the thermoplastic (LDPE, HDPE, PP, or PVC) on the interfacial bond strength of VPC, and the mechanical and physical properties of OSPC, were investigated. The results showed that coupling agents KH550 and MDI improved the interfacial bond strength between wood and thermoplastics under dry conditions. MDI was better than KH550 at improving the interfacial bond strength and the mechanical properties of OSPC. Better interfacial bonding between plastic and wood improved the OSPC performance. The OSPC fabricated using PVC film as the thermoplastic and MDI as the coupling agent displayed the highest mechanical properties, with a modulus of rupture of 91.9 MPa, a modulus of elasticity of 10.9 GPa, and a thickness swelling of 2.4%. PVC and MDI are recommended to fabricate WPCs with desirable performance for general applications.


Author(s):  
Irfan Mustafa ◽  
Tsz Ho Kwok

Abstract Recently the availability of various materials and ongoing research in developing advanced systems for multi-material additive manufacturing (MMAM) have opened doors for innovation in functional products. One major concern of MMAM is the strength at the interface between materials. This paper hypothesizes overlapping and interlacing materials to enhance the bonding strength. To test this hypothesis, we need a computer-aided manufacturing (CAM) tool that can process the overlapped material regions. However, existing computational tools lack key multi-material design processing features and have certain limitations in making full use of the material information, which restricts the testing of our hypothesis. Therefore, this research also develops a new MMAM slicing framework that efficiently identifies the boundaries for materials to develop different advanced features. By modifying a ray tracing technology, we develop layered depth material images (LDMI) to process the material information from computer-aided design (CAD) models for slicing and process planning. Each sample point in the LDMI has associated material and geometric properties that are used to identify the multi-material regions. Based on the material information in each slice, interlocking joint (T-Joint) and interlacing infill are generated in the regions with multiple materials. Tensile tests have been performed to verify the enhancement of mechanical properties by the use of overlapping and interlacing materials.


Author(s):  
Irfan Mustafa ◽  
Tsz-Ho Kwok

Abstract Recently the availability of various materials and ongoing research in developing advanced systems for multi-material additive manufacturing (MMAM) have opened doors for innovation in functional products. One major concern of MMAM is the strength at the interface between materials. This paper hypothesizes overlapping and interlacing materials to enhance the bonding strength. To test this hypothesis, we need a computer-aided manufacturing (CAM) tool that can process the overlapped material regions. However, existing computational tools lack key multi-material design processing features and have certain limitations in making full use of the material information, which restricts the testing of our hypothesis. Therefore, this research also develops a new MMAM slicing framework that efficiently identifies the boundaries for materials to develop different advanced features. By modifying a ray tracing technology, we develop layered depth material images (LDMI) to process the material information from computer-aided design (CAD) models for slicing and process planning. Each sample point in the LDMI has associated material and geometric properties that are used to identify the multi-material regions. Based on the material information in each slice, interlocking joint (T-Joint) and interlacing infill are generated in the regions with multiple materials. Tensile tests have been performed to verify the enhancement of mechanical properties by the use of overlapping and interlacing materials.


Sign in / Sign up

Export Citation Format

Share Document