Calyculin a Modulates Voltage-Dependent Outward Current in Guinea-Pig Taenia Coli Smooth Muscle Cells

Author(s):  
Kazuo Obara ◽  
Toshihiro Usuki ◽  
Hideyo Yabu
1991 ◽  
Vol 47 (9) ◽  
pp. 939-941 ◽  
Author(s):  
T. Usuki ◽  
K. Obara ◽  
T. Someya ◽  
H. Ozaki ◽  
H. Karaki ◽  
...  

1993 ◽  
Vol 265 (6) ◽  
pp. C1552-C1561 ◽  
Author(s):  
L. Zhang ◽  
A. D. Bonev ◽  
M. T. Nelson ◽  
G. M. Mawe

Smooth muscle cells in the intact guinea pig gallbladder had a resting membrane potential of about -45 mV and had spontaneous action potentials that consisted of a rapid depolarization, a transient repolarization, a plateau phase, and a complete repolarization. These action potentials lasted approximately 570 ms and occurred at a frequency of approximately 0.4 Hz. Action potentials were abolished by the dihydropyridine (DHP)-sensitive Ca2+ channel blocker nifedipine (1.0 microM) and were enhanced by the DHP-sensitive Ca2+ channel agonist BAY K 8644 (0.5 microM). The K+ channel blockers tetraethylammonium chloride (5.0 mM) and 4-aminopyridine (4-AP; 2.0 mM) prolonged the action potential, whereas charybdotoxin (100 nM), a blocker of calcium-activated potassium channels, had no effect. Whole cell currents were characterized in enzymatically isolated smooth muscle cells from the same preparation. 4-AP, a blocker of voltage-dependent K+ channels, suppressed 70% of the outward current at 0 mV. Charybdotoxin (100 nM) reduced an additional 15% of the current at 0 mV. Single calcium-activated potassium channels were identified. The potential for half-activation of these channels, at a cytosolic Ca2+ concentration of 100 nM, was 66.8 mV. A fivefold increase in cytosolic Ca2+ resulted in a shift of the activation curve by -53 mV. External tetraethylammonium chloride (200 microM) reduced the mean single channel current by 48% at 0 mV. The whole cell outward current was abolished by replacement of intracellular K+ for Cs+. Ca2+ currents were inhibited by nifedipine and were increased by BAY K 8644. We conclude that DHP-sensitive voltage-dependent Ca2+ channels are responsible for the depolarization of the action potentials and that the repolarization is due to primarily 4-AP-sensitive K+ current.


1993 ◽  
Vol 264 (6) ◽  
pp. G1066-G1076 ◽  
Author(s):  
T. Shimada

The voltage-dependent Ca2+ current was studied in enzymatically dispersed guinea pig gallbladder smooth muscle cells using the whole cell patch-clamp technique. Depolarizing voltage (V) steps induced an inward current (I) that was carried by Ca2+. The threshold potential was -40 to -30 mV, the maximal current was observed at +10 to +20 mV, and the reversal potential was around +80 mV. I-V curves obtained with holding potentials of -80 and -40 mV were not significantly different. This current had a high sensitivity to dihydropyridine drugs, and the Ba2+ or Sr2+ current was larger than the Ca2+ current. Activation was accelerated by increasing the membrane potential. In general, the time course of decay was well fitted by the sum of two exponentials, but consideration of a third (ultra-slow) decay component was also necessary when the current generated by a 2-s command pulse was analyzed. Superimposition of activation and inactivation curves showed the presence of a significant window current. Carbachol suppressed the Ca2+ current only when the pipette contained a low concentration of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. These results show that the L-type Ca2+ current is dominant in gallbladder smooth muscle cells and may contribute to excitation-contraction coupling.


1987 ◽  
Vol 43 ◽  
pp. 240
Author(s):  
Hideto Oyamada ◽  
Ikuo Maruyama ◽  
Tomohiko Hasegawa ◽  
Kazuko Otsuka ◽  
Kazutaka Momose

Sign in / Sign up

Export Citation Format

Share Document