scholarly journals Inactivation of the voltage-dependent Ca2+ channel current in smooth muscle cells isolated from the guinea-pig detrusor.

1993 ◽  
Vol 471 (1) ◽  
pp. 107-127 ◽  
Author(s):  
S Nakayama ◽  
A F Brading
1993 ◽  
Vol 264 (6) ◽  
pp. G1066-G1076 ◽  
Author(s):  
T. Shimada

The voltage-dependent Ca2+ current was studied in enzymatically dispersed guinea pig gallbladder smooth muscle cells using the whole cell patch-clamp technique. Depolarizing voltage (V) steps induced an inward current (I) that was carried by Ca2+. The threshold potential was -40 to -30 mV, the maximal current was observed at +10 to +20 mV, and the reversal potential was around +80 mV. I-V curves obtained with holding potentials of -80 and -40 mV were not significantly different. This current had a high sensitivity to dihydropyridine drugs, and the Ba2+ or Sr2+ current was larger than the Ca2+ current. Activation was accelerated by increasing the membrane potential. In general, the time course of decay was well fitted by the sum of two exponentials, but consideration of a third (ultra-slow) decay component was also necessary when the current generated by a 2-s command pulse was analyzed. Superimposition of activation and inactivation curves showed the presence of a significant window current. Carbachol suppressed the Ca2+ current only when the pipette contained a low concentration of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. These results show that the L-type Ca2+ current is dominant in gallbladder smooth muscle cells and may contribute to excitation-contraction coupling.


1994 ◽  
Vol 103 (4) ◽  
pp. 665-678 ◽  
Author(s):  
U Klöckner ◽  
G Isenberg

Modulation of L-type Ca2+ channel current by extracellular pH (pHo) was studied in vascular smooth muscle cells from bovine pial and porcine coronary arteries. Relative to pH 7.4, alkaline pH reversibly increased and acidic pH reduced ICa. The efficacy of pHo in modulating ICa was reduced when the concentration of the charge carrier was elevated ([Ca2+]o or [Ba2+]o varied between 2 and 110 mM). Analysis of whole cell and single Ca2+ channel currents suggested that more acidic pHo values shift the voltage-dependent gating (approximately 15 mV per pH-unit) and reduce the single Ca2+ channel conductance gCa due to screening of negative surface charges. pHo effects on gCa depended on the pipette [Ba2+] ([Ba2+]p), pK*, the pH providing 50% of saturating conductance, increased with [Ba2+]p according to pK* = 2.7-2.log ([Ba2+]p) suggesting that protons and Ba2+ ions complete for a binding site that modulates gCa. The above mechanisms are discussed in respect to their importance for Ca2+ influx and vasotonus.


1998 ◽  
Vol 355 (2-3) ◽  
pp. 257-266 ◽  
Author(s):  
Hisanori Hazama ◽  
Toshiaki Nakajima ◽  
Michiko Asano ◽  
Kuniaki Iwasawa ◽  
Toshihiro Morita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document