Myocardial fatty acid oxidation during ischemia and reperfusion

Author(s):  
René Lerch ◽  
Christian Tamm ◽  
Irene Papageorgiou ◽  
Richard H. Benzi
1992 ◽  
Vol 116 (1-2) ◽  
pp. 103-109 ◽  
Author(s):  
Ren� Lerch ◽  
Christian Tamm ◽  
Irene Papageorgiou ◽  
Richard H. Benzi

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 379-P
Author(s):  
KESHAV GOPAL ◽  
QUTUBA G. KARWI ◽  
SEYED AMIRHOSSEIN TABATABAEI DAKHILI ◽  
CORY S. WAGG ◽  
RICCARDO PERFETTI ◽  
...  

2016 ◽  
Vol 310 (6) ◽  
pp. E452-E460 ◽  
Author(s):  
K. J. Mather ◽  
G. D. Hutchins ◽  
K. Perry ◽  
W. Territo ◽  
R. Chisholm ◽  
...  

Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[18F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([11C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m−2·min−1) to 3-h saline infusion. Lean controls ( n = 10) were compared with glycemically controlled volunteers with T2DM ( n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption ( P = 0.04) and perfusion ( P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids ( P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions ( P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups ( P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM ( P = 0.003). Myocardial work efficiency was lower in T2DM ( P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization ( P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e65532 ◽  
Author(s):  
Dolena Ledee ◽  
Michael A. Portman ◽  
Masaki Kajimoto ◽  
Nancy Isern ◽  
Aaron K. Olson

2006 ◽  
Vol 84 (11) ◽  
pp. 1215-1222 ◽  
Author(s):  
Arzu Onay-Besikci ◽  
Nandakumar Sambandam

The concentration of fatty acids in the blood or perfusate is a major determinant of the extent of myocardial fatty acid oxidation. Increasing fatty acid supply in adult rat increases myocardial fatty acid oxidation. Plasma levels of fatty acids increase post-surgery in infants undergoing cardiac bypass operation to correct congenital heart defects. How a newborn heart responds to increased fatty acid supply remains to be determined. In this study, we examined whether the tissue levels of malonyl CoA decrease to relieve the inhibition on carnitine palmitoyltransferase (CPT) I when the myocardium is exposed to higher concentrations of long-chain fatty acids in newborn rabbit heart. We then tested the contribution of the enzymes that regulate tissue levels of malonyl CoA, acetyl CoA carboxylase (ACC), and malonyl CoA decarboxylase (MCD). Our results showed that increasing fatty acid supply from 0.4 mmol/L (physiological) to 1.2 mmol/L (pathological) resulted in an increase in cardiac fatty acid oxidation rates and this was accompanied by a decrease in tissue malonyl CoA levels. The decrease in malonyl CoA was not related to any alterations in total and phosphorylated acetyl CoA carboxylase protein or the activities of acetyl CoA carboxylase and malonyl CoA decarboxylase. Our results suggest that the regulatory role of malonyl CoA remained when the hearts were exposed to high levels of fatty acids.


Sign in / Sign up

Export Citation Format

Share Document