Ultrasonic Imaging and Finite Element Analysis of Adhesively Bonded Cylinders

1991 ◽  
pp. 153-161 ◽  
Author(s):  
N. K. Batra ◽  
K. E. Simmonds ◽  
M. A. Tamm ◽  
H. H. Chaskelis
1988 ◽  
Vol 16 (3) ◽  
pp. 146-170 ◽  
Author(s):  
S. Roy ◽  
J. N. Reddy

Abstract A good understanding of the process of adhesion from the mechanics viewpoint and the predictive capability for structural failures associated with adhesively bonded joints require a realistic modeling (both constitutive and kinematic) of the constituent materials. The present investigation deals with the development of an Updated Lagrangian formulation and the associated finite element analysis of adhesively bonded joints. The formulation accounts for the geometric nonlinearity of the adherends and the nonlinear viscoelastic behavior of the adhesive. Sample numerical problems are presented to show the stress and strain distributions in bonded joints.


2011 ◽  
Vol 110-116 ◽  
pp. 3611-3616 ◽  
Author(s):  
Xiao Cong He

This paper deals with forced vibration behavior of adhesively bonded single-lap joint theoretically and experimentally. The finite element analysis (FEA) software was used to predict the natural frequencies and frequency response functions (FRFs) of the joint. The dynamic test software and the data acquisition hardware were used in experimental measurement of the dynamic response of the joint. It is shown that the natural frequencies of the joint from experiment are lower than those predicted using finite element analysis. It is also found that the measued FRFs are close to the predicted FRFs for the first two modes of vibration of the joint. Above the second mode of vibration, there is considerable discrepancy between the measured and predicted FRFs.


Sign in / Sign up

Export Citation Format

Share Document