Determinants of Action Potential Transfer from Cell to Cell

Author(s):  
Robert Weingart
1989 ◽  
Vol 67 (7) ◽  
pp. 780-787 ◽  
Author(s):  
Elena Ruiz-Petrich ◽  
Normand Leblanc

Blockers of the transient outward current (4-aminopyridine) and the Ca current (Co2+) as well as injection of polarizing current during the plateau were used to assess the role of these current systems as determinants of action potential duration at different pacing rates. Papillary muscles and ventricular trabecula were superfused with oxygenated Krebs solution at 33 °C and driven at a basic rate of 1 Hz. The effects of varying the frequency of stimulation between 0.1 and 4 Hz on action potential parameters were determined under control conditions and during exposure to 2 mM 4-aminopyridine, 1–3 mM CoCl2, or a mixture of 4-aminopyridine and CoCl2. The control relationship between action potential duration and pacing rate showed a maximum between 1 and 2 Hz. Under 4-aminopyridine, the plateau height and the action potential duration increased. The rate-dependent shortening of the action potential at frequencies below 1 Hz was reduced or abolished, and enhanced shortening was observed at rates above 1 Hz. Exposure to Co2+ reduced the action potential shortening at rates higher than 1 Hz. Both blockers, 4-aminopyridine and Co2+ were necessary to eliminate the rate-dependent changes of the action potential duration. Our results indicated that both the transient outward current and the inward calcium current determine the plateau height and duration for frequencies ≤2 Hz, whereas at higher rates, the Ca current plays a dominant role.Key words: action potential duration, stimulation rate, Ca current, transient outward current.


Author(s):  
Joachim R. Sommer ◽  
Teresa High ◽  
Betty Scherer ◽  
Isaiah Taylor ◽  
Rashid Nassar

We have developed a model that allows the quick-freezing at known time intervals following electrical field stimulation of a single, intact frog skeletal muscle fiber isolated by sharp dissection. The preparation is used for studying high resolution morphology by freeze-substitution and freeze-fracture and for electron probe x-ray microanlysis of sudden calcium displacement from intracellular stores in freeze-dried cryosections, all in the same fiber. We now show the feasibility and instrumentation of new methodology for stimulating a single, intact skeletal muscle fiber at a point resulting in the propagation of an action potential, followed by quick-freezing with sub-millisecond temporal resolution after electrical stimulation, followed by multiple sampling of the frozen muscle fiber for freeze-substitution, freeze-fracture (not shown) and cryosectionmg. This model, at once serving as its own control and obviating consideration of variances between different fibers, frogs etc., is useful to investigate structural and topochemical alterations occurring in the wake of an action potential.


Sign in / Sign up

Export Citation Format

Share Document