Maximium Entropy Deconvolution of four Sensor Acoustic Emission Maps in Aerospace Structures

Author(s):  
Paul Wells ◽  
Rob Rose
2014 ◽  
Vol 10 (1) ◽  
pp. 2-17 ◽  
Author(s):  
S. Masmoudi ◽  
A. El Mahi ◽  
R. El Guerjouma ◽  
S. Turki

Purpose – The smaller sizes of current electronic devices suggest the feasibility of creating a smart composite structure using piezoelectric implant to monitor in-situ and in-service conditions the life of civil and aerospace structures. Piezoelectric (lead zirconate-titanate (PZT)) sensors embedded within laminates composites represent a new branch of engineering with the potential to greatly enhance the confidence and use of these materials. The paper aims to discuss these issues. Design/methodology/approach – This study presents a health monitoring of laminates composites materials incorporating by piezoelectric (PZT) implant using acoustic emission (AE) technique. A series of specimens of laminate composite with and without embedded piezoelectric were tested in three-point bending tests in static and creep loading while continuously monitoring the response by the AE technique. The AE signals were analysed using the classification k-means method in order to identify the different damages and to follow the evolution of these various mechanisms for both types of materials (with and without embedded sensors). Findings – Comparing embedded sensor to sensor mounted on the surface, the embedded sensor showed a much higher sensitivity. It was thus verified that the embedded AE sensor had great potential for AE monitoring in fibre reinforced composites structures. Originality/value – Piezoelectric implant to monitor in-situ and in-service conditions the life of civil and aerospace structures.


2001 ◽  
Vol 148 (4) ◽  
pp. 169-177 ◽  
Author(s):  
R.P. Dalton ◽  
P. Cawley ◽  
M.J. Lowe
Keyword(s):  

2020 ◽  
Vol 92 (2) ◽  
pp. 20401
Author(s):  
Evgeniy Dul'kin ◽  
Michael Roth

In relaxor (1-x)SrTiO3-xBiFeO3 ferroelectrics ceramics (x = 0.2, 0.3 and 0.4) both intermediate temperatures and Burns temperatures were successfully detected and their behavior were investigated in dependence on an external bias field using an acoustic emission. All these temperatures exhibit a non-trivial behavior, i.e. attain the minima at some threshold fields as a bias field enhances. It is established that the threshold fields decrease as x increases in (1-x)SrTiO3-xBiFeO3, as it previously observed in (1-x)SrTiO3-xBaTiO3 (E. Dul'kin, J. Zhai, M. Roth, Phys. Status Solidi B 252, 2079 (2015)). Based on the data of the threshold fields the mechanisms of arising of random electric fields are discussed and their strengths are compared in both these relaxor ferroelectrics.


Sign in / Sign up

Export Citation Format

Share Document