Peep Decreases Oxygenation of the Intestinal Mucosa Despite Normalization of Cardiac Output

Author(s):  
A. Fournell ◽  
T. W. L. Scheeren ◽  
L. A. Schwarte
2003 ◽  
Vol 98 (3) ◽  
pp. 658-669 ◽  
Author(s):  
Luzius B. Hiltebrand ◽  
Vladimir Krejci ◽  
Marcus E. tenHoevel ◽  
Andrej Banic ◽  
Gisli H. Sigurdsson

Background Hypoperfusion of the intestinal mucosa remains an important clinical problem during sepsis. Impairment of the autoregulation of microcirculatory blood flow in the intestinal tract has been suggested to play an important role in the development of multiple organ failure during sepsis and surgery. The authors studied microcirculatory blood flow in the gastrointestinal tract in anesthetized subjects during early septic shock. Methods Eighteen pigs were intravenously anesthetized and mechanically ventilated. Regional blood flow in the superior mesenteric artery was measured with ultrasound transit time flowmetry. Microcirculatory blood flow was continuously measured with a six-channel laser Doppler flowmetry system in the mucosa and the muscularis of the stomach, jejunum, and colon. Eleven pigs were assigned to the sepsis group, while seven animal served as sham controls. Sepsis was induced with fecal peritonitis, and intravenous fluids were administered after 240 min of sepsis to alter hypodynamic sepsis to hyperdynamic sepsis. Results In the control group, all monitored flow data remained stable throughout the study. During the hypodynamic phase of sepsis, cardiac output, superior mesenteric artery flow, and microcirculatory blood flow in the gastric mucosa decreased by 45%, 51%, and 40%, respectively, compared to baseline (P < 0.01 in all). Microcirculatory blood flow in the muscularis of the stomach, jejunum, and colon decreased by 55%, 64%, and 70%, respectively (P < 0.001 in all). In contrast, flow in the jejunal and colonic mucosa remained virtually unchanged. During the hyperdynamic phase of sepsis, there was a threefold increase in cardiac output and superior mesenteric artery flow. Blood flow in the gastric, jejunal, and colonic mucosa also increased (22%, 24%, and 31% above baseline, respectively). Flow in the muscularis of the stomach returned to baseline, while in the jejunum and colon, flow in the muscularis remained significantly below baseline (55% and 45%, respectively, P< 0.01). Conclusions It appears that in early septic shock, autoregulation of microcirculatory blood flow is largely intact in the intestinal mucosa in anesthetized pigs, explaining why microcirculatory blood flow remained virtually unchanged. This may be facilitated through redistribution of flow within the intestinal wall, from the muscularis toward the mucosa.


Author(s):  
R. B. Moyes ◽  
R. E. Droleskey ◽  
M. H. Kogut ◽  
J. R. DeLoach

Salmonella enteritidis (SE) is of great concern to the poultry industry due to the organism's ability to penetrate the intestinal mucosa of the laying hen and subsequently colonize the ovaries and yolk membrane. The resultant subclinical infection can lead to SE infection of raw eggs and egg products. Interference with the ability of the organism to invade has been linked to the activation and recruitment of inflammatory polymorphonuclear cells, heterophils, to the lamina propria of the intestinal tract.Recently it has been established that heterophil activation and increased resistance to SE organ invasion can be accomplished by the administration of SE-immune lymphokines (SE-ILK) obtained from supernatants of concanavalin-A stimulated SE immune T lymphocytes from SE hyperimmunized hens. Invasion of SE into the lamina propria provides a secondary signal for directing activated heterophils to the site of SE invasion.


2006 ◽  
Vol 12 ◽  
pp. 6-7
Author(s):  
Juan Ybarra ◽  
Josep Maria Pou ◽  
Teresa Doñate ◽  
Monica Isart ◽  
Jaime Pujadas

Sign in / Sign up

Export Citation Format

Share Document