Mechanisms of thyroid hormone control over sensitivity and maximal contractile responsiveness to β-adrenergic agonists in atria

Author(s):  
Enn K. Seppet ◽  
Allen Kaasik ◽  
Ave Minajeva ◽  
Kalju Paju ◽  
Jorma J. Ohisalo ◽  
...  
1977 ◽  
Vol 232 (5) ◽  
pp. C196-C201 ◽  
Author(s):  
K. D. Philipson ◽  
I. S. Edelman

To assess the possible role of the Na+ pump in mediating physiological responses to thyroid hormone in the rat myocardium, we examined the effects of L-3,5,3'-triiodothyronine (T3) on the activities of the closely associated enzymes, Na+-K+-dependent adenosine triphosphatase (Na-K-ATPase) and K+-dependent p-nitrophenyl phosphatase (K-dep-pNPPase). In hypothyroid rats, administration of T3 (50 microng/100 g body wt) resulted in significant increases (greater than 50%) in Na-K-ATPase and K-dep-pNPPase activities in both crude homogenates and microsomal fractions of the rat ventricle. Significant effects on Na-K-ATPase activity were also attained with low doses (1 microng/100 g body wt) of T3. A method was developed for assaying K-dep-pNPPase activity in cardiac slices. With this technique, enhancement in K-dep-pNPPase activity of 89.2% was found in ventricle slices after treatment of hypothyroid rats with T3 (50 microng/100 g body wt), implying that augmentation of the capacity of the Na+ pump is achieved in vivo. The potent analogue, L-3,5-diiodo-3' isopropyl thyronine (isopropyl T2) had the same effects on cardiac growth and Na-K-ATPase as T3, in hypothyroid rats. In contrast, the relatively inactive isomer, L-3,3',5'-triiodothyronine (reverse T3) had no significant effect on the heart weight-to-body weight ratio or on ventricular Na-K-ATPase activity.


1990 ◽  
Vol 265 (3) ◽  
pp. 731-734 ◽  
Author(s):  
R P Hafner ◽  
G C Brown ◽  
M D Brand

Oxidative phosphorylation can be treated as two groups of reactions; those that generate protonmotive force (dicarboxylate carrier, succinate dehydrogenase and the respiratory chain) and those that consume protonmotive force (adenine nucleotide and phosphate carriers. ATP synthase and proton leak). Mitochondria from hypothyroid rats have lower rates of respiration in the presence of ADP (state 3) than euthyroid controls. We show that the kinetics of the protonmotive-force generators are unchanged in mitochondria from hypothyroid animals, but the kinetics of the protonmotive-force consumers are altered, supporting proposals that the important effects of thyroid hormone on state 3 are on the ATP synthase or the adenine nucleotide translocator.


Sign in / Sign up

Export Citation Format

Share Document