Normal sampling theory: estimation of ‘parameters’ by confidence intervals, by maximum likelihood

Author(s):  
C. Mack
2021 ◽  
Vol 11 (2) ◽  
pp. 673
Author(s):  
Guangli Ben ◽  
Xifeng Zheng ◽  
Yongcheng Wang ◽  
Ning Zhang ◽  
Xin Zhang

A local search Maximum Likelihood (ML) parameter estimator for mono-component chirp signal in low Signal-to-Noise Ratio (SNR) conditions is proposed in this paper. The approach combines a deep learning denoising method with a two-step parameter estimator. The denoiser utilizes residual learning assisted Denoising Convolutional Neural Network (DnCNN) to recover the structured signal component, which is used to denoise the original observations. Following the denoising step, we employ a coarse parameter estimator, which is based on the Time-Frequency (TF) distribution, to the denoised signal for approximate estimation of parameters. Then around the coarse results, we do a local search by using the ML technique to achieve fine estimation. Numerical results show that the proposed approach outperforms several methods in terms of parameter estimation accuracy and efficiency.


2021 ◽  
Vol 9 (3) ◽  
pp. 151-155
Author(s):  
Fehim J Wani ◽  

The Generalized Logarithmic Series Distribution (GLSD) adds an extra parameter to the usual logarithmic series distribution and was introduced by Jain and Gupta (1973). This distribution has found applications in various fields. The estimation of parameters of generalized logarithmic series distribution was studied by the methods of maximum likelihood, moments, minimum chi square and weighted discrepancies. The GLSD was fitted to counts of red mites on apple leaves and it was observed that all the estimation techniques perform well in estimating the parameters of generalized logarithmic series distribution but with varying degree of non-significance.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20 ◽  
Author(s):  
Raúl Gouet ◽  
F. Javier López ◽  
Lina Maldonado ◽  
Gerardo Sanz

We consider the maximum likelihood and Bayesian estimation of parameters and prediction of future records of the Weibull distribution from δ -record data, which consists of records and near-records. We discuss existence, consistency and numerical computation of estimators and predictors. The performance of the proposed methodology is assessed by Montecarlo simulations and the analysis of monthly rainfall series. Our conclusion is that inferences for the Weibull model, based on δ -record data, clearly improve inferences based solely on records. This methodology can be recommended, more so as near-records can be collected along with records, keeping essentially the same experimental design.


Sign in / Sign up

Export Citation Format

Share Document