Effect of Protein Treatment on the Enzymatic Hydrolysis of Lysinoalanine and other Amino Acids

Author(s):  
Laurent Savoie
Author(s):  
Mehdi Ashraf-Khorassani ◽  
William M. Coleman ◽  
Michael F. Dube ◽  
Larry T. Taylor

SummaryFree amino acids have been isolated via optimized enzymatic hydrolysis of F1 tobacco protein using two cationic resins (Amberlite IR120 and Dowex MAC-2). Optimized enzymatic conversions of the protein as a result of systematic variations in conditions (e.g., time, temperature, pH, enzyme type, enzyme concentration, anaerobic/aerobic environments, and protein concentration) employing commercially available enzymes, were consistently higher than 50% with qualitative amino acid arrays that were consistent with the known composition of tobacco F1 protein. Amberlite IR120 was shown to have a much higher efficiency and capacity for isolation of amino acids from standard solutions and from hydrolysate when compared with the results using Dowex MAC-2. Two columns packed with conditioned Amberlite IR120 (120 × 10 mm,12–15 g resin) and (200 × 25.4 mm, 60–65 g resin) were used to isolate two batches (2.5–3.0 mg and 13–15 mg) of free amino acids, respectively. A relatively inexpensive analytical methodology was developed for rapid analysis of the free amino acids contained within the enzyme hydrolysate. Commercially available enzymes, when employed in optimized reaction conditions, are very effective for enzymatic conversion of tobacco F1 protein to free amino acids.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yanbin Zheng ◽  
Qiushi Chen ◽  
Anshan Shan ◽  
Hao Zhang

For utilizing the blood cells (BCs) effectively, enzymatic hydrolysis was applied to produce the enzymatically hydrolyzed blood cells (EHBCs) by using a neutral protease as a catalyst. The results of the single-factor experiments showed optimal substrate concentration, enzyme to substrate ratio (E/S), pH, temperature, and incubation period were 1.00%, 0.10, 7.00, 50.00°C, and 12.00 h, respectively. The optimized hydrolysis conditions from response surface methodology (RSM) were pH 6.50, E/S 0.11, temperature 45.00°C, and incubation period 12.00 h. Under these conditions (substrate concentration 1.00%), the degree of hydrolysis (DH) was 35.06%. The free amino acids (FAAs) content of the EHBCs (35.24%) was 40.46 times higher than BCs while the total amino acids (TAAs) content was lower than BCs. The scores of lysine (human 0.87; pig 0.97), valine (human 1.42; pig 1.38), leucine (human 1.50; pig 1.90), tyrosine (human 0.84; pig 1.09), and histidine (human 2.17; pig 2.50) indicated that the EHBCs basically fulfilled the adult human and pig nutritional requirements. The calculated protein efficiency ratios (C-PERs) of the EHBCs were 3.94, 6.19, 21.73, and 2.04. In summary, the EHBCs were produced successfully with optimized conditions and could be a novel protein source for humans and pigs.


2007 ◽  
Vol 146 (1-3) ◽  
pp. 231-248 ◽  
Author(s):  
Yi Zheng ◽  
Zhongli Pan ◽  
Ruihong Zhang ◽  
Donghai Wang ◽  
Bryan Jenkins

2012 ◽  
Vol 554-556 ◽  
pp. 1387-1394
Author(s):  
He Jian Xiong ◽  
Longfei Cao ◽  
Huajun You ◽  
Qingpi Yan ◽  
Ying Ma

Tilapia frames were subjected to enzymatic hydrolysis using Flavouzryme and Papain with a ratio of 2:1. The relationship of temperature (40 to 60°C), enzyme: substrate ratio (0.5% to 4.5%), initial pH (6.0 to 8.0) and hydrolysis time (1h to 9h) to the degree of hydrolysis were determined. The enzymatic hydrolysis was optimized for maximum degree of hydrolysis using surface response methodology. The optimum conditions for enzymatic hydrolysis of tilapia frames were temperature 53°C, enzyme : substrate ratio of 3.5%, initial pH 7.2, and reaction time 7h. Under these conditions a degree of hydrolysis of 40.01% were obtained. The yield of free amino acids in the hydrolysate was 46.61mg/g tilapia frames. The flavor amino acids and essential amino acids occupied up to 31.8% and 49.0% of the total free amino acids respectively. The hydrolysate of waste tilapia frames showed good potential for applications such as protein supplementation in food system.


1973 ◽  
Vol 51 (6) ◽  
pp. 1147-1153 ◽  
Author(s):  
James L. Harris ◽  
Willard A. Taber

The composition of the cell walls of synnemal and vegetative hyphae of Ceratocystis ulmi was studied by fractionation and assay of released compounds. Residues after enzymatic hydrolyses were examined by electron microscopy. The synnemal wall was found to have 67% carbohydrate, 4.52% amino sugar, 5.02% protein, 1.6% lipid, and 0.59% ash, which accounted for 78.7% of the cell wall. The vegetative hyphal wall contained 56% carbohydrate, 3.44% amino sugar, 7.92% protein, 4.5% lipid, and 1.45% ash, which totaled 73.3% of the wall weight. Sugars identified were D-glucose, D-mannose, D-galactose, and L-rhamnose. Enzymatic hydrolysis of both wall types by cellulase and laminaranase indicated the presence of beta-1,3 and beta-1,4 linkages of glucose polymers. N-acetylglucosamine was liberated by chitinase. Most of the 16 amino acids detected in each wall type were at least twice as abundant in vegetative hyphal walls as in synnemal hyphal walls. Cellulase and laminaranase treatment of cell walls revealed a fibrillar structure. Chitinase-treated walls did not appear as fibrous, suggesting that the fibrous structure may be mostly chitinous. Synnemal cell walls are covered by electron-dense granules which may correspond to the pigment in the synnemal hyphae.


Sign in / Sign up

Export Citation Format

Share Document