substrate ratio
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 37)

H-INDEX

25
(FIVE YEARS 5)

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 306
Author(s):  
Yukun Zhang ◽  
Manabu Ishikawa ◽  
Shunsuke Koshio ◽  
Saichiro Yokoyama ◽  
Serge Dossou ◽  
...  

This study aimed to improve the nutritional value of soybean meal (SBM) by solid-state fermentation (SSF) using Bacillus subtilis natto (B. s. natto) to overcome the limitations of SBM usage in aquafeed. The response surface methodology (RSM) was employed to explore the relationships of fermentation conditions, such as temperature, time, water-substrate ratio, and layer thickness, on the degree of protein hydrolysis (DH) and the crude protein (CP) content. The optimum conditions for achieving the higher DH (15.96%) and CP (55.76%) were 43.82 °C, 62.32 h, 1.08 of water-substrate ratio, and a layer thickness of 2.02 cm. CP and DH in the fermented soybean meal (FSM) increased by 9.8% and 177.1%, respectively, and crude fiber decreased by 14.1% compared to SBM. The protein dispersibility index (PDI) decreased by 29.8%, while KOH protein solubility (KPS) was significantly increased by 17.4%. Flavonoids and total phenolic acid content in FSM were increased by 231.0% and 309.4%, respectively. Neutral protease activity (NPA) also reached a high level (1723.6 U g−1). Total essential amino acids (EAA) in FSM increased by 12.2%, higher than the 10.8% increase of total non-essential amino acids (NEAA), while the total free amino acids content was 12.76 times higher than that of SBM. Major anti-nutritional factors in SBM were significantly reduced during the process, and almost all SBM protein macromolecules were decomposed. Together with the cost-effectiveness of SSF, B. s. natto-fermented SBM products have great potential to improve the plant composition and replace high-cost ingredients in aquafeed, contributing to food security and environmental sustainability.


Author(s):  
Santo Fabio Corsino ◽  
Michele Torregrossa ◽  
Gaspare Viviani

The aim of this study was to evaluate the effect of the inoculum to substrate ratio (ISR) and the mixture ratio between organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) on the methane production potential achievable from anaerobic co-digestion (AcoD). Biochemical Methane Potential (BMP) assays at mesophilic temperature were used to determine the best AcoD configuration for maximizing methane yield and production rate, as well as to address possible synergistic effects. The maximum methane yield was observed at ISR of 1 and 60% OFMSW :40% SS as co-digestion mixture, whereas the highest methane production rate was achieved at ISR of 2 with the same mixture ratio (207 mL/gVS/d). Synergistic effects were highlighted in the mixtures having OFMSW below 60%, determining an increase of approximately 40% in methane production than the OFMSW and SS digestion as a sole substrate. The experimental data demonstrated that co-digestion of OFMSW and SS resulted in an increase in the productivity of methane than anaerobic digestion using the sole substrates, producing higher yields or production rates while depending on the ISR and the mixture ratio.


2021 ◽  
Vol 16 ◽  
pp. 100558
Author(s):  
H.I. Owamah ◽  
S.C. Ikpeseni ◽  
M.I. Alfa ◽  
S.O. Oyebisi ◽  
S. Gopikumar ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4156
Author(s):  
Elnaz Erfanian ◽  
Milad Kamkar ◽  
Shital Patangrao Pawar ◽  
Yalda Zamani Keteklahijani ◽  
Mohammad Arjmand ◽  
...  

This study intends to reveal the significance of the catalyst to substrate ratio (C/S) on the structural and electrical features of the carbon nanotubes and their polymeric nanocomposites. Here, nitrogen-doped carbon nanotube (N-MWNT) was synthesized via a chemical vapor deposition (CVD) method using three ratios (by weight) of iron (Fe) catalyst to aluminum oxide (Al2O3) substrate, i.e.,1/9, 1/4, and 2/3, by changing the Fe concentration, i.e., 10, 20, and 40 wt.% Fe. Therefore, the synthesized N-MWNT are labelled as (N-MWNTs)10, (N-MWNTs)20, and (N-MWNTs)40. TEM, XPS, Raman spectroscopy, and TGA characterizations revealed that C/S ratio has a significant impact on the physical and chemical properties of the nanotubes. For instance, by increasing the Fe catalyst from 10 to 40 wt.%, carbon purity increased from 60 to 90 wt.% and the length of the nanotubes increased from 1.2 to 2.6 µm. Interestingly, regarding nanotube morphology, at the highest C/S ratio, the N-MWNTs displayed an open-channel structure, while at the lowest catalyst concentration the nanotubes featured a bamboo-like structure. Afterwards, the network characteristics of the N-MWNTs in a polyvinylidene fluoride (PVDF) matrix were studied using imaging techniques, AC electrical conductivity, and linear and nonlinear rheological measurements. The nanocomposites were prepared via a melt-mixing method at various loadings of the synthesized N-MWNTs. The rheological results confirmed that (N-MWNTs)10, at 0.5–2.0 wt.%, did not form any substantial network through the PVDF matrix, thereby exhibiting an electrically insulative behavior, even at a higher concentration of 3.0 wt.%. Although the optical microscopy, TEM, and rheological results confirmed that both (N-MWNTs)20 and (N-MWNTs)40 established a continuous 3D network within the PVDF matrix, (N-MWNTs)40/PVDF nanocomposites exhibited approximately one order of magnitude higher electrical conductivity. The higher electrical conductivity of (N-MWNTs)40/PVDF nanocomposites is attributed to the intrinsic chemical features of (N-MWNTs)40, such as nitrogen content and nitrogen bonding types.


2021 ◽  
Vol 25 (7) ◽  
pp. 1341-1346
Author(s):  
P.O. Osemwenkhae ◽  
P.O. Uadia

Crude lipase (acetone powder) was extracted from freshly sprouted melon seeds (Cucumeropsis manni). The activity, kinetic properties (effect of time, pH, and enzyme and substrate concentration, respectively) as well as the ability of the crude lipase to catalyze the production of methyl esters (biodiesel) were examined. The enzyme activity was determined using n-hexane as the solvent (1:2 v/w solvent: substrate ratio) and the transesterification product was analyzed by HPLC. A linear relationship was observed between reaction time and rate of lipolysis with the optimal activity at 2hr of incubation. Furthermore, the lipase was optimally active at acid pH 5 and lipolysis was achieved optimally when the amount of enzyme was 2.0g. Rate of lipolysis was observed to increase linearly at concentrations up to 5.0g of substrate above which a drop in the rate, with no apparent decrease in activity, was observed. The Km (6.25g) and Vmax (13.33%FFA/hr) were also determined. Analysis of the transesterification product yielded 0.61% alkyl ester, 0.81 %FFA, 93.17% TAG, 4.15% 1, 3-DAG and 1.26% 1, 2-DAG while transesterification efficiency was determined to be at 0.588%. Biodiesel (alkyl esters) prepared with the crude lipase was had a density of 0.872 g/mL while its cloud and pour points were 22°C and 12°C, respectively. The results from this research showed that an active lipase was isolated from sprouted melon seeds. However, the fuel properties of the biodiesel produced did not meet international transportation fuel standards. In order to be used industrially, better reaction conditions need to be established for the lipase.


2021 ◽  
Author(s):  
Akanksha Agrawal ◽  
Parmesh Kumar Chaudhari ◽  
Prabir Ghosh

Abstract To address the world's energy issue and global climate change, a green, efficient and carbon-neutral renewable energy sourcesare in great demand to replace fossil fuels. The study was undertaken to determine optimal inoculum to substrate ratio for increase in biogas generation via co-digestion of fruit and vegetable waste under mesophilic environmental conditions (25–34oC). Biomethane potential of the fruit and vegetable waste was accessed in terms of biogas yield. Digestate from gobar gas plant was taken as inoculum. Biomethane potential (BMP) assay was performed in a 500ml glass bottle with suitable inlet and outlet arrangement for taking feed and collection of biogas. Inoculum to substrateratio chosen for the study was 0.2, 0.3,0.5,0.7 and 0.8. Highest daily biogas yield was obtained for inoculum to substrate ratio of 30: 70 i.e. reactor R2 which is equivalent to 440 ml on day 14 with methane yield of 58%. Cumulative biogas yields for different inoculum to substrate ratio were in the range of 6–11.378 L/day.


2021 ◽  
Vol 349 ◽  
pp. 129170
Author(s):  
Xia Liu ◽  
Liujing Li ◽  
Jinglin Yu ◽  
Les Copeland ◽  
Shujun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document