Analysis of Inverse Scattering Solutions from Single Frequency, Combined Transmission and Reflection Data for the Helmholtz and Riccati Exact Wave Equations

Author(s):  
W. W. Kim ◽  
S. A. Johnson ◽  
M. J. Berggren ◽  
F. Stenger ◽  
C. H. Wilcox
Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. SI125-SI137 ◽  
Author(s):  
A. B. Weglein ◽  
B. G. Nita ◽  
K. A. Innanen ◽  
E. Otnes ◽  
S. A. Shaw ◽  
...  

The starting point for the derivation of a new set of approaches for predicting both the wavefield at depth in an unknown medium and transmission data from measured reflection data is the inverse scattering series. We present a selection of these maps that differ in order (i.e., linear or nonlinear), capability, and data requirements. They have their roots in the consideration of a data format known as the T-matrix and have direct applicability to the data construction techniques motivating this special issue. Of particular note, one of these, a construction of the wavefield at any depth (including the transmitted wavefield), order-by-order in the measured reflected wavefield, has an unusual set of capabilities (e.g., it does not involve an assumption regarding the minimum-phase nature of the data and is accomplished with processing in the simple reference medium only) and requirements (e.g., a suite of frequencies from surface data are required to compute a single frequency of the wavefield at depth when the subsurface is unknown). An alternative reflection-to-transmission data mapping (which does not require a knowledge of the wavelet, and in which the component of the unknown medium that is linear in the reflection data is used as a proxy for the component of the unknown medium that is linear in the transmission data) is also derivable from the inverse scattering series framework.


2021 ◽  
Vol 18 (01) ◽  
pp. 143-167
Author(s):  
Mengni Li

We are interested in the inverse scattering problem for semi-linear wave equations in one dimension. Assuming null conditions, we prove that small data lead to global existence of solutions to [Formula: see text]-dimensional semi-linear wave equations. This result allows us to construct the scattering fields and their corresponding weighted Sobolev spaces at the infinities. Finally, we prove that the scattering operator not only describes the scattering behavior of the solution but also uniquely determines the solution. The key ingredient of our proof is the same strategy proposed by Le Floch and LeFloch [On the global evolution of self-gravitating matter. Nonlinear interactions in Gowdy symmetry, Arch. Ration. Mech. Anal. 233 (2019) 45–86] as well as Luli et al. [On one-dimension semi-linear wave equations with null conditions, Adv. Math. 329 (2018) 174–188] to make full use of the null structure and the weighted energy estimates.


1985 ◽  
Vol 26 (11) ◽  
pp. 2803-2813 ◽  
Author(s):  
James H. Rose ◽  
Margaret Cheney ◽  
Brian DeFacio

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jiaran Qi ◽  
Jinghui Qiu ◽  
Chongzhi Han

Four different models are applied to effectively describe a geometrically simple dielectric-composite slab. The corresponding model parameters, when the oblique incidence is taken into account, are retrieved based on the transmission and reflection data and compensated with the nonmagnetic assumption. The scattering parameters of each model with derived parameters for various angles of incidence are then analytically calculated using the forward propagation matrix method and compared with the simulated scattering parameters from the real composite slab. According to these comparisons, it is shown that spatial dispersion makes it challenging to achieve angle-independent parameters for the applied four models. Moreover, when a stratified model is employed to describe the composite slab of our interest under oblique incidence, the boundary layers need to be anisotropic.


Like a number of other nonlinear dispersive wave equations the sine–Gordonequation z , xt = sin z has both multi-soliton solutions and an infinity of conserved densities which are polynomials in z , x , z , xx , etc. We prove that the generalized sine–Gordon equation z , xt = F ( z ) has an infinity of such polynomial conserved densities if, and only if, F ( z ) = A e αz + B e – αz for complex valued A, B and α ≠ 0. If F ( z ) does not take the form A e αz + B e βz there is no p. c. d. of rank greater than two. If α ≠ – β there is only a finite number of p. c. ds. If α = – β then if A and B are non-zero all p. c. ds are of even rank; if either A or B vanishes the p. c. ds are of both even and odd ranks. We exhibit the first eleven p. c. ds in each case when α = – β and the first eight when α ≠ – β . Neither the odd rank p. c. ds in the case α = – β , nor the particular limited set of p. c. ds in the case when α ≠ – β have been reported before. We connect the existence of an infinity of p. c. ds with solutions of the equations through an inverse scattering method, with Bäcklund transformations and, via Noether’s theorem, with infinitesimal Bäcklund transformations. All equations with Bäcklund transformations have an infinity of p. c. ds but not all such p. c. ds can be generated from the Bäcklund transformations. We deduce that multiple sine–Gordon equations like z , xt = sin z + ½ sin ½ z , which have applications in the theory of short optical pulse propagation, do not have an infinity of p. c. ds. For these equations we find essentially three conservation laws: one and only one of these is a p. c. d. and this is of rank two. We conclude that the multiple sine–Gordons will not be soluble by present formulations of the inverse scattering method despite numerical solutions which show soliton like behaviour. Results and conclusions are wholly consistent with the theorem that the generalized sine–Gordon equation has auto-Bäcklund transformations if, and only if Ḟ ( z ) – α 2 F ( z ) = 0.


Sign in / Sign up

Export Citation Format

Share Document