propagation matrix
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 845
Author(s):  
Johannes T. Ferreira

A cornerstone in the modeling of wireless communication is MIMO systems, where a complex matrix variate normal assumption is often made for the underlying distribution of the propagation matrix. A popular measure of information, namely capacity, is often investigated for the performance of MIMO designs. This paper derives upper bounds for this measure of information for the case of two transmitting antennae and an arbitrary number of receiving antennae when the propagation matrix is assumed to follow a scale mixture of complex matrix variate normal distribution. Furthermore, noncentrality is assumed to account for LOS scenarios within the MIMO environment. The insight of this paper illustrates the theoretical form of capacity under these key assumptions and paves the way for considerations of alternative distributional choices for the channel propagation matrix in potential cases of severe fading, when the assumption of normality may not be realistic.


2021 ◽  
Author(s):  
José Pinheiro de Moura ◽  
João Viana da Fonseca Neto

The tuning of the gains of a controller with proportional-integral-derivative (PID) actions has been prevalent in the industry. The adjustment of these gains in PID controllers is often determined by classical methods, such as Ziegler-Nichols, and trial and error. However, these methods fail to deliver satisfactory performance and often do not meet specific project demands because of the inherent complexity of industrial processes, such as plant parameter variations. To solve the tuning problem in highly complex industrial processes, a controller adjustment method based on the internal product of PID terms is proposed, and a propagation matrix (PM) is generated by the numerator coefficients of the plant transfer function (TF). In the proposed method, each term of the PID controller is influenced by each of the numerator and the denominator coefficients. Mathematical models of practical plants, such as unloading and resumption of bulk solids by car dumpers and bucket wheel resumption, were employed to evaluate the proposed method. The obtained results demonstrated an assertive improvement in the adjustment gains from PID actions, thereby validating it as a promising alternative to conventional methods.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Feng Zhu ◽  
Ernian Pan ◽  
Zhenghua Qian

Abstract In this paper, acoustic vibration of hexagonal nanoparticles is investigated. In terms of the spherical system of vector functions, the first-order differential equation with constant coefficients for a layered sphere is obtained via variable transformation and mass conservation. The propagation matrix method is then used to obtain the vibration equation in the multilayered system. Further utilizing a new root-searching algorithm, the present solution is first compared to the existing solution for a uniform and isotropic sphere. It is shown that, by increasing the sublayer number, the present solution approaches the exact one. After validating the formulation and program, we investigate the acoustic vibration characteristics in nanoparticles. These include the effects of material anisotropy, damping, and core–shell imperfect interface on the vibration frequency and modal shapes of the displacements and tractions.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 649 ◽  
Author(s):  
Hongshan Zhao ◽  
Weitao Zhang ◽  
Yan Wang

Modelling and estimating power-line communication (PLC) channels are complicated issues due to the complex network topologies, various junctions, and changeable loads. This paper focuses on the frequency response characteristics (FRCs) of medium-voltage (MV) PLC networks with special consideration of two scenarios that are often neglected but generally exist. In the first scenario, the MV distribution network is of the ring topology. In the second scenario, the MV overhead lines and underground cables join at junctions, and the shields of underground cables are grounded with nonzero grounding impedances at the junctions. These conditions lead to the failure of currently popular methods to different degrees. For this reason, we developed an effective method to calculate the FRCs of distribution networks for PLC applications. With this method, the frequency responses of nodes are simply expressed as the binary function of the overall tube propagation matrix and overall node scattering matrix, which is convenient for calculations and analyses. The proposed method was validated by the agreement between the calculated and measured FRCs. The results of two test examples showed that the proposed method performed better in comparison with the traditional approximate method when nonideal grounding conditions were taken into account. The proposed method is also independent of the network topology, so it can adapt to the dynamic changes of the network structure.


2018 ◽  
Author(s):  
Guangtan Huang ◽  
Xiaohong Chen ◽  
Cong Luo ◽  
Jingye Li ◽  
Xiangyang Li

Author(s):  
Xiao-Jin Wan ◽  
Hanjie Zhang

In this paper, a novel fixture mechanism with combining a mobility of the legged robot and advantages of parallel mechanism is designed to hold the different size and shape, large-scale workpiece. The proposed mobile fixture mechanism holds the workpiece as a parallel manipulator while it walks as a legged robot. This kind of robotized fixtures can possess high self-configurable ability to accommodate a wider variety of products. In order to obtain the best kinematic dexterity and accuracy characteristics, comprehensive performance optimization is performed by non-dominated-genetic algorithm (NSGA-II). In the optimization procedure, a conventional kinematic transformation matrix (Jacobian matrix) and error propagation matrix are obtained through derivation and differential motion operations. The singular values and condition number based on velocity Jacobians and error amplification factors based on error propagation matrix are derived; in addition, relative pose error range of end effector is also derived. On the basis of the above measure indices, three kinds of nonlinear optimization problems are defined to obtain the optimal architecture parameters for better kinematic accuracy and dexterity in workspace. Comparison analyses of the optimized results are performed.


Sign in / Sign up

Export Citation Format

Share Document