The ZIPE Solution for the Earth’s Rotation Parameters and Some Accuracy Estimations

Author(s):  
H. Montag ◽  
G. Gendt
2000 ◽  
Vol 180 ◽  
pp. 293-302 ◽  
Author(s):  
V.A. Brumberg ◽  
Pierre Bretagnon

AbstractDynamical theories of the Earth’s rotation like SMART97 (Bretagnon et al., 1998) are to be considered in a DGRS (dynamically nonrotating geocentric reference system) (Brumberg et al., 1996). Such a theory gives the explicit expressions in terms of TCG (Geocentric Coordinate Time) of three Euler angles relating a DGRS to the ITRS (International Terrestrial Reference System). These angular quantities together with their TCG derivatives enable one to get all Earth’s rotation parameters. At the same time, the analysis of observations result in the values for slightly different angles and their TCG derivatives characterizing the relationship between the ITRS and a KGRS (kinematically nonrotating geocentric reference system). The differences between these two sets of six quantities represent kinematical relativistic corrections (due to geodesic precession, geodesic nutation and luni-planetary terms). The paper presents these differences computed by means of the VSOP87 series (Bretagnon and Francou, 1988). In particular, in analysing observations at the microarcsecond level these expressions will permit an experimental check of geodesic precession in a more direct manner than it is done nowadays (Bertotti et al., 1987).


2014 ◽  
Vol 59 (4) ◽  
pp. 184-188 ◽  
Author(s):  
S. S. Krylov ◽  
Yu. G. Markov ◽  
V. V. Perepelkin

2003 ◽  
Vol 29 (10) ◽  
pp. 667-673
Author(s):  
A. M. Finkelstein ◽  
A. V. Ipatov ◽  
S. G. Smolentsev ◽  
V. G. Grachev ◽  
I. A. Rakhimov ◽  
...  

1981 ◽  
Vol 63 ◽  
pp. 11-23
Author(s):  
Ye Shu-Hua

This paper is based on optical observations of 85 instruments (Table 1-a) from January to October 1980. The accuracies of all instruments, 62 for time and 54 for latitude, are shown in Table 1-b, in which:–the roughness ε1i of daily observations is defined by the standard deviation of the observation values of the i-th instrument with respect to the smoothed values of themselves;–the ε2i is the standard deviation of mean observation values during every 0.05 year with respect to the global reference system.The average accuracy of each type of instrument is given in Table 2, regional averages are given in Table 3.These tables show that errors in time observations are greater, generally speaking, than those in latitude, and low frequency errors are greater than high frequency ones in time observations.


2021 ◽  
Author(s):  
Radosław Zajdel ◽  
Krzysztof Sośnica ◽  
Grzegorz Bury ◽  
Kamil Kazmierski

<p>Variations in the Earth's rotation can be examined in the low-frequency and high-frequency temporal scales. The low-frequency variations are dominated by the annual and Chandler wobbles, while the high-frequency variations are primarily caused by tidal effects and mass redistributions within the system Earth. Depending on the purpose, the Earth Rotation Parameters (ERPs) can be estimated in different time resolutions using space-geodetic techniques, especially using GNSS. However, the residual signals between different space geodetic techniques or satellite constellations indicate system-specific differences, which have to be correctly identified.</p><p>This research provides the daily, and sub-daily series of Earth Rotation Parameters (ERPs) estimated using GPS, GLONASS, and Galileo observations. We test different sampling intervals of estimated ERPs from 1h to 24h. The GNSS-based sub-daily estimates have been compared with the external models of variations in ERPs induced by the ocean tides from the IERS 2010 Conventions, a new model by Desai-Sibois, and the VLBI-based model by Gipson.</p><p>Any system-specific ERPs are affected by the orbital and draconitic signals. The orbital signals are visible in all system-specific ERPs at the periods that arise from the resonance between the Earth's rotation and the satellite revolution period, e.g., 8.87h, 34.22h, 3.4 days, 10 days for Galileo; 7.66h, 21.29h, 3.9 days, 7.9 days for GLONASS; 7.98h (S3 tidal term), 11.97h (S2 tidal term), 23.93h (S1 tidal term) for GPS. In the Galileo and GLONASS solutions, the artificial non-tidal signals' amplitudes can reach up to 30 µas. The GPS-derived sub-daily ERPs suffer from the overlapping periods of the diurnal and semidiurnal tidal terms and the harmonics of the GPS revolution period. After recovery of 38 sub-daily tidal terms, the Galileo-based model is more consistent with the external models than the GPS-based model, especially in the prograde diurnal band. The results confirmed that the Desai–Sibois model is more consistent with GNSS observations than the currently recommended model by the IERS 2010 Conventions. Moreover, GPS-based length-of-day (LoD) is systematically biased with respect to the IERS-C04-14 values with a mean offset of −22.4 µs/day, because of the deep resonance 2:1 between the satellite revolution period and the Earth rotation. The Galileo-based and GLONASS-based solutions are almost entirely free of this issue. Against the individual system-specific solutions, the multi-GNSS solution is not affected by most of the system-specific artifacts. Thus, multi-GNSS solutions are clearly beneficial for the estimation of both daily and sub-daily ERPs.</p>


Author(s):  
Александр Кузьмич Гречкосеев ◽  
Александр Сергеевич Толстиков ◽  
Виктор Мартынович Тиссен ◽  
Виталий Сергеевич Карманов ◽  
Анна Игоревна Ваганова

Растущие потребности в точности координатно-временных определений со стороны многих прикладных наук о Земле и практических задач приводят к необходимости постоянного совершенствования средств и методов определения и прогнозирования параметров вращения Земли. Параметр “всемирное время”, характеризующий фазу вращения Земли, в наибольшей степени среди других влияет на точность координатно-временных определений. В данной статье приводится описание применения метода сингулярного спектрального анализа к прогнозированию временных рядов параметров вращения Земли. Предлагается модификация базового метода, направленная на повышение точности прогноза. Выполнены сравнительные оценки точности прогнозов всемирного времени, рассчитанных методом сингулярного спектрального анализа, с аналогичными прогнозами Международной службы вращения Земли. Показана целесообразность применения метода сингулярного спектрального анализа для прогнозирования на интервалы более 50 дней Growing demand for accuracy of coordinate-time determinations from both many applied Earth sciences and practical problems requires the continuous improvement of means and methods for determining and predicting the parameters of the Earth rotation. Parameter “World time” characterizes phase of the Earth’s rotation and mostly affects the accuracy of coordinate-time determinations. This article describes application of method of singular spectral analysis for forecasting the time series of the Earth’s rotation parameters. We propose modification of basic method, which aims at increasing forecast accuracy. We made comparative estimates for accuracy of world time forecasts calculated by the method of singular spectral analysis with similar forecasts by the International Earth Rotation Service. The expediency of using the method of singular spectral analysis for predicting intervals of more than 50 days is shown


1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


Sign in / Sign up

Export Citation Format

Share Document