space geodetic techniques
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 36)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Yaozong Zhou ◽  
Yidong Lou ◽  
Weixing Zhang ◽  
Jingna Bai ◽  
Zhenyi Zhang

2021 ◽  
Vol 11 (6) ◽  
pp. 2785
Author(s):  
Michael Lösler ◽  
Cornelia Eschelbach ◽  
Thomas Klügel ◽  
Stefan Riepl

A global geodetic reference system (GGRS) is realized by physical points on the Earth’s surface and is referred to as a global geodetic reference frame (GGRF). The GGRF is derived by combining several space geodetic techniques, and the reference points of these techniques are the physical points of such a realization. Due to the weak physical connection between the space geodetic techniques, so-called local ties are introduced to the combination procedure. A local tie is the spatial vector defined between the reference points of two space geodetic techniques. It is derivable by local measurements at multitechnique stations, which operate more than one space geodetic technique. Local ties are a crucial component within the intertechnique combination; therefore, erroneous or outdated vectors affect the global results. In order to reach the ambitious accuracy goal of 1 mm for a global position, the global geodetic observing system (GGOS) aims for strategies to improve local ties, and, thus, the reference point determination procedures. In this contribution, close range photogrammetry is applied for the first time to determine the reference point of a laser telescope used for satellite laser ranging (SLR) at Geodetic Observatory Wettzell (GOW). A measurement campaign using various configurations was performed at the Satellite Observing System Wettzell (SOS-W) to evaluate the achievable accuracy and the measurement effort. The bias of the estimates were studied using an unscented transformation. Biases occur if nonlinear functions are replaced and are solved by linear substitute problems. Moreover, the influence of the chosen stochastic model onto the estimates is studied by means of various dispersion matrices of the observations. It is shown that the resulting standard deviations are two to three times overestimated if stochastic dependencies are neglected.


2021 ◽  
Author(s):  
Helene Wolf ◽  
Johannes Böhm ◽  
Matthias Schartner ◽  
Urs Hugentobler

<p>Over the last years, ideas have been proposed to install a Very Long Baseline Interferometry (VLBI) transmitter on one or more satellites of the Galileo constellation. Satellites transmitting signals that can be observed by VLBI telescopes provide the opportunity of extending the current VLBI research with observations to geodetic satellites. These observations offer a variety of new possibilities such as high precision tying of space geodetic techniques but also the direct determination of the absolute orientation of the satellite constellation with respect to the International Celestial Reference Frame (ICRF) and have implications on the determination of long-term reference frames. </p><p>This contribution provides a visibility study of the Galileo satellites from a VLBI network. The newly developed satellite scheduling module in VieSched++ is used to determine the time periods during which a satellite is observable from a VLBI network. The possible satellite observations are evaluated through the number of stations from which a satellite is observable. Moreover, the impact on determining the orientation of the satellite constellation, caused by the observation geometry, is investigated with using the UT1-UTC Dilution of Precision (UDOP) factor.</p>


2021 ◽  
Author(s):  
Chaiyaporn Kitpracha ◽  
Robert Heinkelmann ◽  
Markus Ramatschi ◽  
Kyriakos Balidakis ◽  
Benjamin Männel ◽  
...  

<p>Atmospheric ties are induced by differences between the set-up of observing geodetic systems at co-location sites, are mainly attributed to frequency and position, and are usually quantified by zenith delay and gradient component offsets derived by weather models or in situ instuments.. Similar to local ties, they could be applied to combine datasets from several space geodetic techniques, thus contributing to the improvement of the realization of terrestrial reference frames (TRF). Theoretically, atmospheric ties are affected only by the height differences between antennas at the same site and meteorological conditions. Therefore, atmospheric ties could be determined analytically based on meteorological information from in situ measurements or weather models. However, there is often a discrepancy between the expected zenith delay differences and those estimated from geodetic analysis, potentially degrading a combined atmospheric ties solution should tight constraints be used. In this study, we set up a GNSS experiment campaign on the rooftop of a building in Telegrafernberg that offers unobscured data coverage for one month. We compared the estimated zenith delay and gradients from GNSS stations in this experiment, applying atmospheric ties from (1) meteorological data from the Global Pressure and Temperature model 3 (GPT3), (2) ERA5 reanalysis, and (3) in-situ measurements, as well as corrections derived from ray tracing (Potsdam Mapping Functions, PMF). The results show that atmospheric ties employing GPT3, ERA5, in-situ measurements, and ray tracing has an excellent and comparable performance in term of bias mitigation, but not in term of standard deviation, for zenith delay. Moreover, the unexpected bias in zenith delay was identified in the antenna with radome installation. A significantly large bias was identified in estimated gradients; the source of this discrepancy has been traced back to unmitigated multipath effects in this experiment.</p>


2021 ◽  
Author(s):  
Iván Darío Herrera Pinzón ◽  
Markus Rothahcer

<p>The current realisation of the ITRF2014, features the estimation of polar motion (x-pole and y-pole) based on the combination of the four space geodetic techniques, whereas polar motion rates are based on two techniques, and UT1-UTC and LOD are taken only from the solution of a single technique (VLBI). Moreover,the combination of troposphere parameters (from VLBI and GNSS) with tropospheric ties and the combination of common clocks at the fundamental sites are not yet exploited in this combination strategy. Therefore, a rigorous combination of all common parameter types, with consistent Earth Orientation Parameters (EOPs) and with appropriate inter-technique tropospheric and clock ties, is still a considerable way to go.</p><p>The guiding principle for a rigorous combination is that all parameter types common to more than one space geodetic observation technique should be combined, including their full variance-covariance information as well as the corresponding ties. Based on this fact, and keeping in mind that both, GNSS and geodetic VLBI are based on microwave frequencies, and that their physical models and their parameter types (site coordinates and velocities, troposphere estimates, EOPs and -possibly- clock estimates) are closely related, we used data from the CONT17 campaign to study the benefits to be expected from a more rigorous combination approach, and we developed a processing scheme, based on a tailored version of the Bernese V5.2 software, for the consistent estimation of all EOPs, with daily and sub-daily resolution of polar motion and UT1-UTC, and for realising inter-technique tropospheric ties. We discuss the challenges and results of this rigorous inter-technique combination of VLBI and GNSS observations, and provide evidence of the need of such an approach.</p>


2021 ◽  
Author(s):  
Sujata Dhar ◽  
Ashutosh Tiwari ◽  
Nagarajan Balasubramanian ◽  
Balaji Devaraju ◽  
Onkar Dikshit ◽  
...  

<p>National Centre for Geodesy (NCG) has been established in IIT Kanpur, India with the vision of acting as a hub of excellence in geodetic research at the National and International level. Working towards its mission, it has initiated this state-of-the- art establishment for improving the space geodetic infrastructure of the country and encouraging more researches in the geodesy field. The presentation will discuss the current status of the planned core site and its future establishments. It will provide detailed description of all the facilities installed in the site right now, and the future extensions. This new core-site will house facilities for three technologies – Space, Time and Earth gravity domain. The main purpose of establishing this site is for improving the realization of terrestrial and celestial reference frames, Earth Orientation Parameters (EOPs) and other data products essential for understanding the Earth’s environment. This co-located site with four space geodetic techniques will help in the International campaign for determination of TRF with 1mm accuracy and 0.1 mm/yr. stability. Moreover, this site location will improve the uniformity in geographical distribution of the ITRF observatories and the necessity of this station has been confirmed by simulation modelling.</p><p>Keywords: NCG, India, Core site, TRF, stability, uniformity.</p>


2021 ◽  
Author(s):  
Alberto Garcia-Rigo ◽  
Benedikt Soja ◽  

<p>The JWG3 aims at investigating different approaches to monitor space weather events using the data from different space geodetic techniques and, in particular, combinations thereof. Simulations will also be considered since these could be beneficial to identify the contribution of different techniques and prepare for the analysis of real data. Different strategies for the combination of data are also to be investigated, in particular the weighting of estimates from different techniques in order to increase the performance and reliability of the combined estimates.</p><p>Furthermore, existing algorithms for the detection and prediction of space weather events shall be explored and improved to the extent possible. Additionally, the geodetic measurement of the ionospheric electron density will be complemented by direct observations from the Sun gathered from existing spacecraft, such as SOHO, ACE, SDO, Parker Solar Probe, among others. The combination and joint evaluation of multiple datasets from different space geodetic observation techniques (e.g., geodetic VLBI) is still a great challenge. In addition, other indications for solar activity - such as the F10.7 index on solar radio flux, SOLERA as EUV proxy or rate of Global Electron Content (dGEC), provide additional opportunities for comparisons and validation.</p><p>As per JWG3 objectives, these include the identification of the key parameters useful to improve real time/prediction of ionospheric/plasmaspheric VTEC, Ne estimates, as well as ionospheric perturbations, in case of extreme solar weather conditions. In general, we are on the way to gain a better understanding of space weather events and their effect on Earth’s atmosphere and near-Earth environment.</p>


2021 ◽  
Author(s):  
Hendrik Hellmers ◽  
Sabine Bachmann ◽  
Daniela Thaller ◽  
Mathis Bloßfeld ◽  
Manuela Seitz

<p>The ITRF2020 will be the next official solution of the International Terrestrial Reference Frame and the successor of the currently used frame, i.e., ITRF2014. Based on an inter-technique combination of all four space geodetic techniques VLBI, GNSS, SLR and DORIS, contributions from different international institutions lead to the global ITRF2020 solution. In this context, the IVS Combination Centre operated by the Federal Agency for Cartography and Geodesy (BKG, Germany) in close cooperation with the Deutsches Geodätisches Forschungsinstitut (DGFI-TUM, Germany) generates the final contribution of the International VLBI Service for Geodesy and Astrometry (IVS). Thereby, an intra-technique combination utilizing the individual contributions of multiple Analysis Centres (AC) is applied.</p><p>For the contribution to the upcoming ITRF2020 solution, sessions containing 24h VLBI observations from 1979 until the end of 2020 are processed by 10 to 12 ACs and submitted to the IVS Combination Centre. The required SINEX format includes datum-free normal equations containing station coordinates and source positions as well as full sets of Earth Orientation Parameters (EOP). For ensuring a consistently combined solution, time series of EOPs, source positions and station coordinates as well as a VLBI-only Terrestrial Reference Frame (VTRF) and a Celestial Reference Frame (CRF) were generated and further investigated.</p><p>One possibility to assess the quality of the IVS contribution to the ITRF2020 solution is to carry out internal as well as external comparisons of the estimated EOP. Thereby, estimates of the individual ACs as well as external time series (e.g. IERS C04, Bulletin A, JPL-Comb2018) serve as a reference. The evaluation of the contributions by the ACs, the combination procedure and the results of the combined solution for station coordinates, source positions and EOPs will be presented.</p>


2021 ◽  
Author(s):  
Vicky Jia Liu ◽  
Maaria Nordman ◽  
Nataliya Zubko

<p>Tropospheric delay is one of the major error sources for space geodetic techniques such as Very Long Baseline Interferometry (VLBI) and Global Navigation Satellite System (GNSS). In this study, we compared the agreement of tropospheric zenith wet delay (ZWD) seasonal variations derived from VLBI and GNSS observations at 8 stations that are located at all around the globe. We have analysed time series of 8 years, starting in 2012 until end of 2019. Results show that VLBI_ZWD present clear seasonal variations which depend on the location of each station, in the tropics the variability is more pronounced than in mid-latitudes or polar regions. Furthermore, the VLBI_ZWD also shows a reasonably good agreement with seasonal fit model. When comparing zenith wet delays derived from co-located GNSS and VLBI stations at  cut-off elevation angle, they agree quite well, which is proved by the high correlation coefficients, varying from 0.6 up to 0.95. The biases between the techniques are in mm level and standard errors of the whole time series are in few centimetres.</p>


2021 ◽  
Author(s):  
Pakize Küreç Nehbit ◽  
Susanne Glaser ◽  
Kyriakos Balidakis ◽  
Pierre Sakic ◽  
Robert Heinkelmann ◽  
...  

<p>The individual space geodetic techniques have different advantages and disadvantages. For instance, the global observing network of Very Long Baseline Interferometry (VLBI) consists of much fewer stations with a poorer distribution than the one of Global Navigation Satellite Systems (GNSS). In a combination thereof, this fact can be compensated, mainly to the benefit of the former.</p><p>The sensitivity level provides information on the detection capacity of observing stations based on undetectable gross errors in a geodetic network solution. Furthermore, sensitivity can be understood as the minimum value of the undetectable gross errors by hypothesis testing. The location of the station in the network and the total weight of its observations contribute to the sensitivity levels thereof. Also, the total observation number of a radio source and the quality of the observations are critical for the sensitivity levels of the radio sources. Besides these criteria, a radio source having a larger structure index has a larger sensitivity level. In this study, it is investigated whether the sensitivity levels of VLBI stations in the CONT14 campaign improve by combination with GNSS. The combination was done at the normal equation level using 153 GNSS stations in total, 17 VLBI radio telescopes, and local ties at 5 co-located stations which are ONSA-ONSALA60, NYA1-NYALES20, ZECK-ZELENCHK, MATE-MATERA, and HOB2-HOBART26 during the CONT14 campaign spanning 15 days. To evaluate the observations of GNSS and VLBI, the software of EPOS8 and VieVS@GFZ (G2018.7, GFZ, Potsdam, Germany) were used respectively. In the VLBI-only solution, FORTLEZA shows the poorest sensitivity level compared to the other VLBI radio telescopes. As a result of the combination with GNSS, it can be seen that the sensitivity levels of FORTLEZA improved by about 60% in all sessions of CONT14. It can be concluded that VLBI stations, which are poorly controlled by the other radio telescopes in the network, can be supported by the other space geodetic techniques to improve the overall quality of the solution.</p>


Sign in / Sign up

Export Citation Format

Share Document