Multi-Wavelength Determination of Total Ozone and Ultraviolet Irradiance

Author(s):  
Alex E. S. Green
2013 ◽  
Vol 31 (2) ◽  
pp. 333-336
Author(s):  
P.A. Ni ◽  
R.M. More ◽  
F.M. Bieniosek

AbstractThis paper examines the reliability of a widely used method for temperature determination by multi-wavelength pyrometry. In recent warm dense matter experiments with ion-beam heated metal foils, we found that the statistical quality of the fit to the measured data is not necessarily a measure of the accuracy of the inferred temperature. We found a specific example where a second-best fit leads to a more realistic temperature value. The physics issue is the wavelength-dependent emissivity of the hot surface. We discuss improvements of the multi-frequency pyrometry technique, which will give a more reliable determination of the temperature from emission data.


2015 ◽  
Vol 108 ◽  
pp. 1-12 ◽  
Author(s):  
D. Massabò ◽  
L. Caponi ◽  
V. Bernardoni ◽  
M.C. Bove ◽  
P. Brotto ◽  
...  

1988 ◽  
Vol 34 (6) ◽  
pp. 1119-1121 ◽  
Author(s):  
B Dingeon ◽  
M A Charvin ◽  
M T Quenard ◽  
H Thome

Abstract Measurement of acetaminophen by analysis of the second derivative of its spectrum is specific and sensitive. The method of extraction and the use of just one phosphate buffer as reagent makes this method very convenient. Readings are reliable from 10 to 1500 mg/L. A turnaround time of 20 min makes this method well suited for emergency cases. Precision and accuracy of the method are presented. Results are not biased by interferences, not even from N-acetylcysteine.


2010 ◽  
Vol 437 ◽  
pp. 423-427 ◽  
Author(s):  
Alexander Höink ◽  
Karl Meiners-Hagen ◽  
Otto Jusko ◽  
Ahmed Abou-Zeid

The experimental results for the determination of the form of thin cylinders (Ø ~ 2.5 mm) as well as step heights of gauge blocks (~ 100 µm) and roundness profiles of test samples from metal or glass with different diameters between ~ 2.5 mm and 80 mm using two multi-wavelength diode laser interferometers are presented and discussed.


2019 ◽  
Vol 12 (6) ◽  
pp. 3173-3182 ◽  
Author(s):  
Dario Massabò ◽  
Alessandro Altomari ◽  
Virginia Vernocchi ◽  
Paolo Prati

Abstract. Thermal–optical analysis is widely adopted for the quantitative determination of total (TC), organic (OC), and elemental (EC) carbon in atmospheric aerosol sampled by suitable filters. Nevertheless, the methodology suffers from several uncertainties and artifacts such as the well-known issue of charring affecting the OC–EC separation. In the standard approach, the effect of the possible presence of brown carbon, BrC, in the sample is neglected. BrC is a fraction of OC, usually produced by biomass burning with a thermic behavior intermediate between OC and EC. BrC is optically active: it shows an increasing absorbance when the wavelength moves to the blue–UV region of the electromagnetic spectrum. Definitively, the thermal–optical characterization of carbonaceous aerosol should be reconsidered to address the possible BrC content in the sample under analysis. We introduce here a modified Sunset Lab Inc. EC–OC analyzer. Starting from a standard commercial instrument, the unit has been modified at the physics department of the University of Genoa (Italy), making possible the alternative use of the standard laser diode at λ=635 nm and of a new laser diode at λ=405 nm. In this way, the optical transmittance through the sample can be monitored at both wavelengths. Since at shorter wavelengths the BrC absorbance is higher, a better sensitivity to this species is gained. The modified instrument also gives the possibility to quantify the BrC concentration in the sample at both wavelengths. The new unit has been thoroughly tested, with both artificial and real-world aerosol samples: the first experiment, in conjunction with the multi-wavelength absorbance analyzer (MWAA; Massabò et al., 2013, 2015), resulted in the first direct determination of the BrC mass absorption coefficient (MAC) at λ=405 nm: MAC =23±1 m2 g−1.


1994 ◽  
Vol 16 (2) ◽  
pp. 71-73 ◽  
Author(s):  
Aimin Tan ◽  
Jialin Huang ◽  
Liudi Geng ◽  
Jinhua Xu ◽  
Xinna Zhao

The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.


Sign in / Sign up

Export Citation Format

Share Document