Influence of Sodium Load on Angiotensin-Induced Sodium Appetite

Author(s):  
Louise M. Fuller ◽  
J. T. Fitzsimons
Keyword(s):  
1977 ◽  
Vol 52 (1) ◽  
pp. 23-31
Author(s):  
R. G. Luke ◽  
B. T. Khanh ◽  
R. D. Schmidt ◽  
J. H. Galla

1. Acute chloride depletion, without sodium depletion, was produced in rats by a single exchange peritoneal dialysis against sodium bicarbonate solution. Blood volume was restored after dialysis by infusion of salt-free albumin, and exogenous deoxycorticosterone and antidiuretic hormone were given. 2. Clearance studies in the period (3 h) after dialysis revealed no difference in the glomerular filtration rate or in the filtered sodium load between experimental and control rats but urinary sodium concentrations and absolute and fractional sodium excretion were significantly higher in the chloride-depleted group. 3. There was also a significant kaliuresis, increased urinary flow rate and diminished free water reabsorption. Urinary bicarbonate excretion increased to a variable degree but the major rise in anion excretion was ‘unmeasured’ (Na+ + K+ — [Cl− +HCO3− +PO43-]). 4. It is postulated that chloride depletion imposes limitations on sodium reabsorption in the ascending limb of the loop of Henle.


1990 ◽  
Vol 104 (5) ◽  
pp. 742-750 ◽  
Author(s):  
Edda Thiels ◽  
Joseph G. Verbalis ◽  
Edward M. Stricker
Keyword(s):  

2011 ◽  
Vol 300 (5) ◽  
pp. R1091-R1099 ◽  
Author(s):  
S. Dayawansa ◽  
S. Peckins ◽  
S. Ruch ◽  
R. Norgren

Rats with bilateral lesions of the lateral hypothalamus (LH) fail to exhibit sodium appetite. Lesions of the parabrachial nuclei (PBN) also block salt appetite. The PBN projection to the LH is largely ipsilateral. If these deficits are functionally dependent, damaging the PBN on one side and the LH on the other should also block Na appetite. First, bilateral ibotenic acid lesions of the LH were needed because the electrolytic damage used previously destroyed both cells and axons. The ibotenic LH lesions produced substantial weight loss and eliminated Na appetite. Controls with ipsilateral PBN and LH lesions gained weight and displayed robust sodium appetite. The rats with asymmetric PBN-LH lesions also gained weight, but after sodium depletion consistently failed to increase intake of 0.5 M NaCl. These results dissociate loss of sodium appetite from the classic weight loss after LH damage and prove that Na appetite requires communication between neurons in the LH and the PBN.


1987 ◽  
Vol XXXI (2) ◽  
pp. 75
Author(s):  
J. KATO ◽  
O. KIDA ◽  
T. HIGA ◽  
A. SASAKI ◽  
K. DONDO ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Tammy M. Brady ◽  
Gilbert Horst ◽  
Lawrence J. Appel ◽  
Philip R. Khoury ◽  
Elaine M. Urbina

1949 ◽  
Vol 158 (3) ◽  
pp. 444-456 ◽  
Author(s):  
D. M. Green ◽  
A. Farah
Keyword(s):  

1995 ◽  
Vol 268 (6) ◽  
pp. R1401-R1405 ◽  
Author(s):  
M. el Ghissassi ◽  
S. N. Thornton ◽  
S. Nicolaidis

The angiotensin receptor specificity, with respect to fluid intake, of the organum cavum prelamina terminalis (OCPLT), a recently discovered discrete forebrain structure with high sensitivity to angiotensin II (ANG II), was investigated. ANG II (10 ng) microinjected into the OCPLT significantly increased water consumption but did not induce intake of a hypertonic (3%) NaCl solution. Losartan, an ANG II type 1 (AT1) receptor-specific antagonist, produced dose-related (1-100 ng) inhibition of ANG II-induced drinking. The ANG II type 2 receptor-specific antagonist CGP-42112A was ineffective. Intake of the 3% NaCl solution in response to microinjection of either of the antagonists into the OCPLT was never observed. These findings suggest that water intake produced by microinjection of ANG II into the OCPLT is mediated by AT1 receptors uniquely and that, in contrast to other regions of the brain, these receptors do not induce salt intake when stimulated by ANG II.


Sign in / Sign up

Export Citation Format

Share Document