Determination of Dissolved Oxygen in Photosynthetic Systems and Protective Strategies Against its Toxic Effects in Cyanobacteria

Author(s):  
Shimshon Belkin ◽  
Lester Packer
2020 ◽  
Vol 16 ◽  
Author(s):  
Ramazan Akçan ◽  
Halit Canberk Aydogan ◽  
Mahmut Şerif Yıldırım ◽  
Burak Taştekin ◽  
Necdet Sağlam

Background/aim: Use of nanomaterials in the healthcare applications increases in parallel to technological developments. It is frequently utilized in diagnostic procedures, medications and in therapeutic implementations. Nanomaterials take place among key components of medical implants, which might be responsible for certain toxic effects on human health at nano-level. In this review, nanotoxicological effects, toxicity determination of nanobiomaterials used in human body and their effects on human health are discussed. Material and Method: A detailed review of related literature was performed and evaluated as per nanomaterials and medical implants. Results and Conclusion: The nanotoxic effects of the materials applied to human body and the determination of its toxicity are important. Determination of toxicity for each nanomaterial requires a detailed and multifactorial assessment considering the properties of these materials. There are limited studies in the literature regarding the toxic effects of nanomaterials used in medical implants. Although these implants are potentially biocompatible and biodegradable, it is highly important to discuss nanotoxicological characteristics of medical implant.


1977 ◽  
Vol 47 (1) ◽  
pp. 265-268 ◽  
Author(s):  
M. Yamaguchi ◽  
Y. Komatsu

2012 ◽  
Vol 741 ◽  
pp. 21-31 ◽  
Author(s):  
Irja Helm ◽  
Lauri Jalukse ◽  
Ivo Leito

2002 ◽  
Vol 140 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Miller D. ◽  
Poucher S. ◽  
Coiro L.

2017 ◽  
pp. 73-82
Author(s):  
Dilyana Doneva ◽  
Juliana Ivanova ◽  
Lyudmila Kabaivanova

Determination of biomass production and viability of algal cells of Chlorella vulgaris and Synechocystis salina exposed to UV-B radiation were carried out in this study together with comparison of the mesophilic and antarctic isolates of both investigated strains. Estimation of the content of the pigments: chlorophyll a, chlorophyll b, β-carotene, C-phycocyanin and allo-phycocyanin in algal cells exposed to UV-B radiation was also accomplished. The obtained results showed that the antarctic algae are more resistant to oxidative stress than their mesophilic counterparts. The antarctic isolates of Ch. vulgaris and S. salina compared with the mesophilic ones - up to 72 h showed tolerance to low exposures of radiation, expressed in a slight stimulation of growth and viability of the cells. Antarctic isolates also showed greater resistance to low doses of UV-B radiation manifested by stimulation of the synthesis of chlorophyll a and β-carotene. The registered increase in the amount of C- and allo-phycocyanin in antarctic isolates of S. salina showed that they had developed protective strategies against UV-B radiation by increasing the concentration of the phycobiliproteins. As a result of increased UV-B background, in antarctic isolates, stronger antioxidant defence mechanisms are triggered, which proved the possibility of using them as markers of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document