Cluster-Preserving Dimension Reduction Methods for Efficient Classification of Text Data

2004 ◽  
pp. 3-23 ◽  
Author(s):  
Peg Howland ◽  
Haesun Park
2019 ◽  
Vol 8 (3) ◽  
pp. 139 ◽  
Author(s):  
Ugur Alganci

Uncontrolled and continuous urbanization is an important problem in the metropolitan cities of developing countries. Urbanization progress that occurs due to population expansion and migration results in important changes in the land cover characteristics of a city. These changes mostly affect natural habitats and the ecosystem in a negative manner. Hence, urbanization-related changes should be monitored regularly, and land cover maps should be updated to reflect the current situation. This research presents a comparative evaluation of two classification algorithms, pixel-based support vector machine (SVM) classification and decision-tree-oriented geographic object-based image analysis (GEOBIA) classification, in producing a dynamic land cover map of the Istanbul metropolitan city in Turkey between 2013 and 2017 using Landsat 8 Operational Land Imager (OLI) multi-temporal satellite images. Additionally, the efficiencies of the two data dimension reduction methods are evaluated as part of this research. For dimension reduction, built-up index (BUI) and principal component analysis (PCA) data were calculated for five images during the mentioned period, and the classification algorithms were applied on data stacks for each dimension reduction method. The classification results indicate that the GEOBIA classification of the BUI data set provided the highest accuracy, with a 91.60% overall accuracy and 0.91 kappa value. This combination was followed by the GEOBIA classification of the PCA data set, which highlights the overall efficiency of the GEOBIA over the SVM method. On the other hand, the BUI data set provided more reliable and consistent results for urban expansion classes due to representing physical responses of the surface when compared to the data set of the PCA, which is a spectral transformation method.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamideh Soltani ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Keivan Maghooli

AbstractBrain computer interface (BCI) systems have been regarded as a new way of communication for humans. In this research, common methods such as wavelet transform are applied in order to extract features. However, genetic algorithm (GA), as an evolutionary method, is used to select features. Finally, classification was done using the two approaches support vector machine (SVM) and Bayesian method. Five features were selected and the accuracy of Bayesian classification was measured to be 80% with dimension reduction. Ultimately, the classification accuracy reached 90.4% using SVM classifier. The results of the study indicate a better feature selection and the effective dimension reduction of these features, as well as a higher percentage of classification accuracy in comparison with other studies.


Sign in / Sign up

Export Citation Format

Share Document