Effects of Specimen Thickness and Side-Groove on Fracture Toughness of JN1 Austenitic Stainless Steel Rolled Plate at Liquid Helium Temperature

Author(s):  
Y. Shindo ◽  
K. Horiguchi ◽  
T. Kobori ◽  
H. Nakajima ◽  
H. Tsuji
1996 ◽  
Vol 118 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Shinji Konosu ◽  
Tomohiro Kishiro ◽  
Ogi Ivano ◽  
Yoshihiko Nunoya ◽  
Hideo Nakajima ◽  
...  

The structural materials of the coils of superconducting magnets utilized in thermonuclear fusion reactors are used at liquid helium (4.2 K) temperatures and are subjected to repeated thermal stresses and electromagnetic forces. A high strength, high toughness austenitic stainless steel (12Cr-12Ni-10Mn-5Mo-0.2N) has recently been developed for large, thick-walled components used in such environments. This material is non-magnetic even when subjected to processing and, because it is a forging material, it is advantageous as a structural material for large components. In the current research, a large forging of 12Cr-12Ni-10Mn-5Mo-0.2N austenitic stainless steel, was fabricated to a thickness of 250 mm, which is typical of section thicknesses encountered in actual equipment. The tensile fatigue crack growth properties of the forging were examined at liquid helium temperature as function of specimen location across the thickness of the forging. There was virtually no evidence of variation in tensile strength or fatigue crack growth properties attributable to different sampling locations in the thickness direction and no effect of thickness due to the forging or solution treatment associated with large forgings was observed. It has been clarified that there are cases in which small scale yielding (SSY) conditions are not fulfilled when stress ratios are large. ΔJ was introduced in order to achieve unified expression inclusive of these regions and, by expressing crack growth rate accordingly, the following formula was obtained at the second stage (middle range). da/dN = CJ ΔJmJ, CJ = AJ/(ΔJ0)mJ, where, AJ = 1.47 × 10−5 mm/cycle, ΔJ0 = 2.42 × 103N/m.


2021 ◽  
Author(s):  
Pilar Fernández-Pisón ◽  
Jose Rodriguez-Martinez ◽  
E. García-Tabares ◽  
I. Avilés-Santillana ◽  
S. Sgobba

In this paper, we have characterized the microstructural evolution and the plastic flow and fracture behaviours of AISI 304L and AISI 316LN stainless steel grades at liquid nitrogen temperature (77 K) and at liquid helium temperature (4 K). Uninterrupted tensile experiments, where the sample is continuously deformed under quasi-static loading conditions until fracture, have been carried out with a Single-Section Sample to obtain the stress-strain characteristics of the two grades. Interrupted tensile experiments, in which the sample is unloaded before fracture, have been performed with a novel Double-Section Sample to later characterize the strain-induced martensitic transformation at different levels of deformation. The content of martensite has been determined post-mortem, using magnetic induction, electron backscatter diffraction and quantitative light optical micrography. The results obtained with the three methods show quantitative agreement, and reveal that the martensitic transformation in AISI 304L occurs faster and to a greater extent than in AISI 316LN both at 77 K and at 4 K. To the authors' knowledge, in this paper we provide the first experimental results for the evolution of the content of strain-induced martensite in AISI 304L and AISI 316LN samples tested at liquid helium temperature. In addition, the experimental data for the evolution of the martensite volume fraction with the strain have been used to identify the temperature-dependent parameters of the martensitic transformation kinetic models proposed by Olson and Cohen (1975) and Garion and Skoczen (2002). Moreover, Mode I fracture tests with fatigue-precracked Compact Samples have been carried out to determine the fracture properties of the two investigated materials using the "resistance curve procedure" (ASTM-E1820-20a, 2020). The crack-growth resistance curves have been obtained with four different methods here referred to as ASTM Compliance Method, W-N Compliance Method, Modified W-N Compliance Method and ASTM Normalization Method, which is an original methodological contribution of this paper. While the four approaches yield similar results for the fracture toughness, only the W-N Compliance Method and the Modified W-N Compliance Method, the latter being proposed in this paper, fulfil all the requirements of the standard ASTM-E1820-20a (2020) so that the calculated fracture toughness can be accepted as a material property. The comparison of results for both materials and testing temperatures shows that the AISI 316LN displays higher fracture toughness than the AISI 304L. Moreover, post-mortem microstructural analysis of the Compact Samples near the fracture surface has revealed that the content of martensite is greater in AISI 304L than in AISI 316LN. Furthermore, for AISI 304L more martensite is formed in the sample tested at 77 K because the plastic deformation near the crack is greater than at 4 K.


Sign in / Sign up

Export Citation Format

Share Document