Use of Bioimpedance Spectroscopy to Determine Extracellular Fluid, Intracellular Fluid, Total Body Water, and Fat-Free Mass

1993 ◽  
pp. 67-70 ◽  
Author(s):  
Marta D. Van Loan ◽  
Paul Withers ◽  
James Matthie ◽  
Patrick L. Mayclin
2004 ◽  
Vol 1 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Michael I Lindinger ◽  
Gloria McKeen ◽  
Gayle L Ecker

AbstractThe purpose of the present study was to determine the time course and magnitude of changes in extracellular and intracellular fluid volumes in relation to changes in total body water during prolonged submaximal exercise and recovery in horses. Seven horses were physically conditioned over a 2-month period and trained to trot on a treadmill. Total body water (TBW), extracellular fluid volume (ECFV) and plasma volume (PV) were measured at rest using indicator dilution techniques (D2O, thiocyanate and Evans Blue, respectively). Changes in TBW were assessed from measures of body mass, and changes in PV and ECFV were calculated from changes in plasma protein concentration. Horses exercised by trotting on a treadmill for 75–120 min incurred a 4.2% decrease in TBW. During exercise, the entire decrease in TBW (mean±standard error: 12.8±2.0 l at end of exercise) could be attributed to the decrease in ECFV (12.0±2.4 l at end of exercise), such that there was no change in intracellular fluid volume (ICFV; 0.9±2.4 l at end of exercise). PV decreased from 22.0±0.5 l at rest to 19.8±0.3 l at end of exercise and remained depressed (18–19 l) during the first 2 h of recovery. Recovery of fluid volumes after exercise was slow, and characterized by a further transient loss of ECFV (first 30 min of recovery) and a sustained increase in ICFV (between 0.5 and 3.5 h of recovery). Recovery of fluid volumes was complete by 13 h post exercise. It is concluded that prolonged submaximal exercise in horses favours net loss of fluid from the extracellular fluid compartment.


Author(s):  
Keisuke Shiose ◽  
Emi Kondo ◽  
Rie Takae ◽  
Hiroyuki Sagayama ◽  
Keiko Motonaga ◽  
...  

Bioimpedance spectroscopy (BIS) is an easy tool to assess hydration status and body composition. However, its validity in athletes remains controversial. We investigated the validity of BIS on total body water (TBW) and body composition estimation in Japanese wrestlers and untrained subjects. TBW of 49 young Japanese male subjects (31 untrained, 18 wrestlers) were assessed using the deuterium dilution method (DDM) and BIS. De Lorenzo’s and Moissl’s equations were employed in BIS for TBW estimation. To evaluate body composition, Siri’s 3-compartment model and published TBW/fat-free mass (FFM) ratio were applied in DDM and BIS, respectively. In untrained subjects, DDM and BIS with de Lorenzo’s equation showed consistent TBW estimates, whereas BIS with Moissl’s equation overestimated TBW (p < 0.001 vs. DDM). DDM and BIS with de Lorenzo’s equation estimated FFM and percent of fat mass consistently, whereas BIS with Moissl’s equation over-estimated and under-estimated them (p < 0.001 vs. DDM). In wrestlers, BIS with de Lorenzo’s and Moissl’s equations assessed TBW similarly with DDM. However, the Bland–Altman analysis revealed a proportional bias for TBW in BIS with de Lorenzo’s equation (r = 0.735, p < 0.001). Body composition assessed with BIS using both equations and DDM were not different. In conclusion, BIS with de Lorenzo’s equation accurately estimates the TBW and body composition in untrained subjects, whereas BIS with Moissl’s equation is more valid in wrestlers. Our results demonstrated the usefulness of BIS for assessing TBW and body composition in Japanese male wrestlers.


1999 ◽  
Vol 87 (1) ◽  
pp. 294-298 ◽  
Author(s):  
Wouter D. Van Marken Lichtenbelt ◽  
Mikael Fogelholm

The hydration of fat free mass (FFM) and extracellular (ECW) and intracellular water (ICW) compartments were studied in 30 obese premenopausal women before and after a 3-mo weight-reduction program and again after a 9-mo weight-maintenance program. Body fat was determined by a four-compartment model. Total body water and ECW were determined by deuterium dilution and bromide dilution, respectively. After the weight-reduction period, mean weight loss was 12.8 kg, and body fat was reduced on average by 10.9 kg. During weight maintenance, changes in body mass and body fat were not significant. Before weight reduction, mean ECW/ICW ratio was relatively high (0.78 ± 0.10). During the the study, total body water and ICW did not change significantly. ECW did not change significantly after weight reduction, but 12 mo after the start ECW was significantly increased by 1 liter. The ECW/ICW ratio increased to 0.87 ± 0.12 ( month 12). The hydration of the FFM increased from 74 ± 1 to 77 ± 2% during the weight reduction and remained elevated during weight maintenance. In conclusion, the ECW/ICW ratio and the hydration of the FFM, did not normalize during weight reduction and weight maintenance.


Endocrinology ◽  
2001 ◽  
Vol 142 (11) ◽  
pp. 4813-4817 ◽  
Author(s):  
Ingrid B. Meeuwsen ◽  
Monique M. Samson ◽  
Sijmen A. Duursma ◽  
Harald J. Verhaar

1992 ◽  
Vol 27 (8) ◽  
pp. 1003-1008 ◽  
Author(s):  
Harry L. Anderson ◽  
Arnold G. Coran ◽  
Robert A. Drongowski ◽  
Hyun J. Ha ◽  
Robert H. Bartlett

Sign in / Sign up

Export Citation Format

Share Document