Late Permian to Late Triassic, Tethyan Paleoenvironments

1995 ◽  
pp. 153-190 ◽  
Author(s):  
Jean Marcoux ◽  
Aymon Baud
Keyword(s):  
Paleobiology ◽  
2012 ◽  
Vol 38 (4) ◽  
pp. 627-643 ◽  
Author(s):  
Brianna L. Rego ◽  
Steve C. Wang ◽  
Demir Altiner ◽  
Jonathan L. Payne

One of the best-recognized patterns in the evolution of organismal size is the tendency for mean and maximum size within a clade to decrease following a major extinction event and to increase during the subsequent recovery interval. Because larger organisms are typically thought to be at higher extinction risk than their smaller relatives, it has commonly been assumed that size reduction mostly reflects the selective extinction of larger species. However, to our knowledge the relative importance of within- and among-lineage processes in driving overall trends in body size has never been compared quantitatively. In this study, we use a global, specimen-level database of foraminifera to study size evolution from the Late Permian through Late Triassic. We explicitly decompose size evolution into within- and among-genus components. We find that size reduction following the end-Permian mass extinction was driven more by size reduction within surviving species and genera than by the selective extinction of larger taxa. Similarly, we find that increase in mean size across taxa during Early Triassic biotic recovery was a product primarily of size increase within survivors and the extinction of unusually small taxa, rather than the origination of new, larger taxa. During background intervals we find no strong or consistent tendency for extinction, origination, or within-lineage change to move the overall size distribution toward larger or smaller sizes. Thus, size stasis during background intervals appears to result from small and inconsistent effects of within- and among-lineage processes rather than from large but offsetting effects of within- and among-taxon components. These observations are compatible with existing data for other taxa and extinction events, implying that mass extinctions do not influence size evolution by simply selecting against larger organisms. Instead, they appear to create conditions favorable to smaller organisms.


2021 ◽  
pp. jgs2020-186
Author(s):  
Emilio Carrillo ◽  
Roberto Barragán ◽  
Christian Hurtado ◽  
Ysabel Calderón ◽  
Germán Martín ◽  
...  

Late Permian to Early Jurassic strata in northern Peru allows us to carry out a seismo-stratigraphic, litho-tectonic and chemostratigraphic analysis connecting the Andean-Amazonian foreland basins of Huallaga, Ucayali, southern Marañón, and the Eastern Cordillera. This analysis and data integration from Ecuador to western Brazil and southern Peru and Bolivia, allow us to redefine the timing of the major documented tectonic phases and corresponding palaeogeographies of western Gondwana from the late Permian to Triassic. Three litho-tectonic sequences and four associated deformation stages are recognized: 1) A sequence, tectonic relaxation, during late Permian; 2) A-B intra-sequence, folding-and-thrusting attributed to a continuation in time of the Gondwanide Orogeny, during the Early to Middle Triassic; 3) B sequence, rifting, attributed to Gondwana breakup during the Middle and Late Triassic; and 4) C Sequence, thermal sag, during the Late Triassic. Evaporites and carbonates (A sequence) dominated a low subsidence basin with southern restricted marine inflow at the Permian-Triassic boundary. A novel palaeogeographic model for these evaporites suggests that this saline basin extended up to 50,000 km2 in a restricted environment area with a potential bullseye pattern. The last pulse of the Gondwanide Orogeny and associated fold and thrust belt (A-B intra-sequence) exhumed previous the sequence generating emerged areas with little to no sedimentation. Red beds (B sequence) characterize the rifting stage, representing the syn-depositional infill of continental grabens, likely extending to the Acre Basin in Brazil. Finally, during the thermal sag, a marine inflow likely from the northwestern part of Peru generated sedimentation of carbonates and evaporites (C Sequence) to the west and east of the Peruvian margin. This sediment differentiation was, in part, controlled by the existence of pre-existing grabens associated to the previous rifting stage. This interpretation, together with other evaporitic occurrences attributed here to a Late Triassic epoch in south and north Peru and west Brazil, suggest the existence of an evaporitic basin filling an undeformed area of probably ca. 170,000 km2. It is therefore suggestive of the existence of a Late Triassic (Norian to Rhaetian; 217 to 204 Ma) salt giant controlled by thermal sag in western Gondwana. Our results are of great relevance for any future interpretation related to mass extinctions, paleoclimatic analysis and ocean dynamics during the Permian and Triassic as well as natural resources distribution between Ecuador and Bolivia.


2017 ◽  
Vol 486 ◽  
pp. 1-5 ◽  
Author(s):  
Zhong-Qiang Chen ◽  
Thomas J. Algeo ◽  
Yadong Sun ◽  
Shane D. Schoepfer

2020 ◽  
Author(s):  
Mikhail Kurapov ◽  
Victoria Ershova ◽  
Andrey Khudoley ◽  
Aleksandr Makariev ◽  
Elena Makarieva

<p>The studied intrusions are located within the Northern Taimyr domain (southern part of the Kara terrane) on the northwestern coast of the Taimyr Peninsula and on several islands in Kara Sea. Intrusions cut the Lower Paleozoic metasedimentary rocks.</p><p>Late Permian – Early Triassic intrusions are represented by coarse- to medium-grained quartz-syenites and alkali-feldspar-granites. U-Pb dating of these granites yelled age of 253 Ma. Ar-Ar micas ages varies from 236 to 251 Ma. The granites are high- to medium acidic, high alkaline (alkali-calcic to alkalic), ferroan and magnesian, mainly peraluminous. Granites are characterized by relatively low initial <sup>87</sup>Sr/<sup>86</sup>Sr ratio (0.7041) and slightly positive εNd(t) value (1.03).</p><p>Middle – Late Triassic intrusions are represented by coarse-grained granodiorites and granites. U-Pb zircon ages of these granites range from 228 to 238 Ma. Ar-Ar micas and amphibole ages varies from 206 to 235 Ma. They are acidic to low acidic, moderately alkaline (alkali-calcic, calc-alkalic), magnesian, peraluminous and metaluminous. Middle – Late Triassic granites are characterized by higher initial <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.7045-0.7060) and negative εNd(t) values (-5.47 to -0.80).</p><p>Late Permian – Early Triassic high alkalic predominantly ferroan granites are most likely related to A-type granites. Middle – Late Triassic moderate alkalic magnesian granites have transitional I/S-type character. Thus, Late Permian – Early Triassic granites likely form an outer rim of the Permo-Triassic Siberian plume. Middle – Late Triassic granites of Northern Taimyr were formed from different source with more significant crustal component contribution. Obtained data suggests two magmatic events throughout Early Mesozoic that affected Northern Taimyr.</p><p>This research was supported by RFBR project No. 19-35-90006</p>


Paleobiology ◽  
2015 ◽  
Vol 42 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Ellen K. Schaal ◽  
Matthew E. Clapham ◽  
Brianna L. Rego ◽  
Steve C. Wang ◽  
Jonathan L. Payne

AbstractThe small size of Early Triassic marine organisms has important implications for the ecological and environmental pressures operating during and after the end-Permian mass extinction. However, this “Lilliput Effect” has only been documented quantitatively in a few invertebrate clades. Moreover, the discovery of Early Triassic gastropod specimens larger than any previously known has called the extent and duration of the Early Triassic size reduction into question. Here, we document and compare Permian-Triassic body size trends globally in eight marine clades (gastropods, bivalves, calcitic and phosphatic brachiopods, ammonoids, ostracods, conodonts, and foraminiferans). Our database contains maximum size measurements for 11,224 specimens and 2,743 species spanning the Late Permian through the Middle to Late Triassic. The Permian/Triassic boundary (PTB) shows more size reduction among species than any other interval. For most higher taxa, maximum and median size among species decreased dramatically from the latest Permian (Changhsingian) to the earliest Triassic (Induan), and then increased during Olenekian (late Early Triassic) and Anisian (early Middle Triassic) time. During the Induan, the only higher taxon much larger than its long-term mean size was the ammonoids; they increased significantly in median size across the PTB, a response perhaps related to their comparatively rapid diversity recovery after the end-Permian extinction. The loss of large species in multiple clades across the PTB resulted from both selective extinction of larger species and evolution of surviving lineages toward smaller sizes. The within-lineage component of size decrease suggests that only part of the size decrease can be related to the end-Permian kill mechanism; in addition, Early Triassic environmental conditions or ecological pressures must have continued to favor small body size as well. After the end-Permian extinction, size decrease occurred across ecologically and physiologically disparate clades, but this size reduction was limited to the first part of the Early Triassic (Induan). Nektonic habitat or physiological buffering capacity may explain the contrast of Early Triassic size increase and diversification in ammonoids versus size reduction and slow recovery in benthic clades.


1978 ◽  
Vol 56 (24) ◽  
pp. 3083-3095 ◽  
Author(s):  
James M. Schopf

An Antarctic specimen chiefily consisting of the osmundine root mat and including branched stems of a fern, assignable to a new species Osmundacaulis beardmorensis, is described and illustrated. Delicate tissues are generally not preserved and no separate petioles can be recognized. Nevertheless, the Early Triassic age of this specimen is well established and the features that can be described seem to fit generally into an intermediate position between Osmundacaulis herstii of the Argentine Late Triassic and Palaeosmunda of the Late Permian from Australia. Secretory islands in petiolar areas seem to be distinctive. The species further illustrates the long established cosmopolitan distribution of members of the Osmundaceae.


2019 ◽  
Vol 56 (6) ◽  
pp. 607-628
Author(s):  
Xiao-Tian Zhang ◽  
Jing-Gui Sun ◽  
Zheng-Tao Yu ◽  
Quan-Heng Song

The Songjianghe deposit is a newly discovered altered gold deposit in the southeastern Jiapigou-Haigou Gold Metallogenic Belt (JHGMB) in southeastern Jilin Province of NE China. The host rocks were considered to be the Mesoproterozoic Seluohe Group, and the metallogenic epoch lacked accurate isotopic constraints. To determine the age and metallogenic setting of the deposit, we describe the geologic characteristics of the deposit and present the results of petrographic and geochronologic analyses of the host rocks and ores. The ore bodies are hosted within a suite of amphibolite facies metamorphic rocks superimposed by greenschist facies indicative of retrograde metamorphism. Zircon U–Pb dating results indicate that the host rocks belong to the Jiapigou Group that formed at the end of the Neoarchean (2543–2527 Ma). Subsequently, the rocks successively underwent metamorphism during the late Neoarchean (2521–2506 Ma), retrograde metamorphism caused by the closure of the Paleo-Asian Ocean during the late Permian to Early Triassic (262–250 Ma), and extension after the closure of the Paleo-Asian Ocean during the Late Triassic (231–210 Ma). Sericite 40Ar/39Ar dating results suggest that the Songjianghe deposit formed during the Late Jurassic between 157 Ma and 156 Ma. By combining these new insights with those of previous studies, we propose that the Songjianghe deposit is a mesothermal gold deposit and that mineralization occurred during the extensional period in the intermittent stage that followed the first subduction of the Paleo-Pacific Plate. All the gold deposits in the JHGMB formed from the late Permian to Early Cretaceous by multi-stage mineralization events that corresponded temporally with the tectonic evolution of the Paleo-Asian Ocean and the episodic subduction of the Paleo-Pacific Plate.


Sign in / Sign up

Export Citation Format

Share Document