The Paleozoic-Mesozoic transition in South China: Oceanic environments and life from Late Permian to Late Triassic

2017 ◽  
Vol 486 ◽  
pp. 1-5 ◽  
Author(s):  
Zhong-Qiang Chen ◽  
Thomas J. Algeo ◽  
Yadong Sun ◽  
Shane D. Schoepfer
2019 ◽  
Vol 157 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Binsong Zheng ◽  
Chuanlong Mou ◽  
Renjie Zhou ◽  
Xiuping Wang ◽  
Zhaohui Xiao ◽  
...  

AbstractPermian–Triassic boundary (PTB) volcanic ash beds are widely distributed in South China and were proposed to have a connection with the PTB mass extinction and the assemblage of Pangea. However, their source and tectonic affinity have been highly debated. We present zircon U–Pb ages, trace-element and Hf isotopic data on three new-found PTB volcanic ash beds in the western Hubei area, South China. Laser ablation inductively coupled plasma mass spectrometry U–Pb dating of zircons yields ages of 252.2 ± 3.6 Ma, 251.6 ± 4.9 Ma and 250.4 ± 2.4 Ma for these three volcanic ash beds. Zircons of age c. 240–270 Ma zircons have negative εHf(t) values (–18.17 to –3.91) and Mesoproterozoic–Palaeoproterozoic two-stage Hf model ages (THf2) (1.33–2.23 Ga). Integrated with other PTB ash beds in South China, zircon trace-element signatures and Hf isotopes indicate that they were likely sourced from intermediate to felsic volcanic centres along the Simao–Indochina convergent continental margin. The Qinling convergent continental margin might be another possible source but needs further investigation. Our data support the model that strong convergent margin volcanism took place around South China during late Permian – Early Triassic time, especially in the Simao–Indochina active continental margin and possibly the Qinling active continental margin. These volcanisms overlap temporally with the PTB biocrisis triggered by the Siberian Large Igneous Province. In addition, our data argue that the South China Craton and the Simao–Indochina block had not been amalgamated with the main body of Pangea by late Permian – Early Triassic time.


Geology ◽  
2006 ◽  
Vol 34 (1) ◽  
pp. e107-e108
Author(s):  
A. L. Weislogel ◽  
S. A. Graham ◽  
E. Z. Chang ◽  
J. L. Wooden ◽  
G. E. Gehrels ◽  
...  

2021 ◽  
Vol 116 (6) ◽  
pp. 1253-1265
Author(s):  
Xiao-Ye Jin ◽  
Jian-Xin Zhao ◽  
Yue-Xing Feng ◽  
Albert H. Hofstra ◽  
Xiao-Dong Deng ◽  
...  

Abstract The ages of Carlin-type gold deposits in the Golden Triangle of South China have long been questioned due to the general lack of minerals unequivocally linked to gold deposition that can be precisely dated using conventional radiogenic isotope techniques. Recent advances in U-Pb methods show that calcite can be used to constrain the ages of hydrothermal processes, but few studies have been applied to ore deposits. Herein, we show that this approach can be used to constrain the timing of hydrothermal activity that generated and overprinted the giant Shuiyindong Carlin-type gold deposit in the Golden Triangle. Three stages of calcite (Cal-1, Cal-2, and Cal-3) have been recognized in this deposit based on crosscutting relationships, cathodoluminescence colors, and chemical (U, Pb, and rare earth element [REE]) and isotope (C, O, Sr) compositions. Cal-1 is texturally associated with ore-stage jasperoid and disseminated Au-bearing arsenian pyrite in hydrothermally altered carbonate rocks, which suggests it is synmineralization. Cal-2 fills open spaces and has a distinct orange cathodoluminescence, suggesting that it precipitated during a second fluid pulse. Cal-1 and Cal-2 have similar carbonate rock-buffered chemical and isotopic compositions. Cal-3 occurs in veins that often contain realgar and/or orpiment and are chemically (low U, Pb, and REE) and isotopically (higher δ13C, lower δ18O and Sri values) distinct from Cal-1 and Cal-2, suggesting that it formed from a third fluid. U-Pb isotope analyses, by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for U-rich Cal-1 and Cal-2 and by LA-multicollector (MC)-ICP-MS for U-poor Cal-3, yield well-defined age constraints of 204.3 to 202.6, 191.9, and 139.3 to 137.1 Ma for Cal-1, Cal-2, and Cal-3, respectively. These new ages suggest that the Shuiyindong gold deposit formed in the late Triassic and was overprinted by hydrothermal events in the early Jurassic and early Cretaceous. Given the association of Cal-3 with orpiment and realgar, and previous geochronologic studies of several other major gold deposits in the Golden Triangle, we infer that the latest stage of calcite may be associated with an early Cretaceous regional gold metallogenic event. Combined with existing isotopic ages in the region, these new ages lead us to propose that Carlin-type gold deposits in the Golden Triangle formed during two metallogenic episodes in extensional settings, associated with the late Triassic Indochina orogeny and early Cretaceous paleo-Pacific plate subduction. This study shows that the calcite U-Pb method can be used to constrain the timing of Carlin-type gold deposits and successive hydrothermal events.


2014 ◽  
Vol 302 ◽  
pp. 44-63 ◽  
Author(s):  
Chong-Jin Pang ◽  
Bryan Krapež ◽  
Zheng-Xiang Li ◽  
Yi-Gang Xu ◽  
Hai-Quan Liu ◽  
...  

Paleobiology ◽  
2012 ◽  
Vol 38 (4) ◽  
pp. 627-643 ◽  
Author(s):  
Brianna L. Rego ◽  
Steve C. Wang ◽  
Demir Altiner ◽  
Jonathan L. Payne

One of the best-recognized patterns in the evolution of organismal size is the tendency for mean and maximum size within a clade to decrease following a major extinction event and to increase during the subsequent recovery interval. Because larger organisms are typically thought to be at higher extinction risk than their smaller relatives, it has commonly been assumed that size reduction mostly reflects the selective extinction of larger species. However, to our knowledge the relative importance of within- and among-lineage processes in driving overall trends in body size has never been compared quantitatively. In this study, we use a global, specimen-level database of foraminifera to study size evolution from the Late Permian through Late Triassic. We explicitly decompose size evolution into within- and among-genus components. We find that size reduction following the end-Permian mass extinction was driven more by size reduction within surviving species and genera than by the selective extinction of larger taxa. Similarly, we find that increase in mean size across taxa during Early Triassic biotic recovery was a product primarily of size increase within survivors and the extinction of unusually small taxa, rather than the origination of new, larger taxa. During background intervals we find no strong or consistent tendency for extinction, origination, or within-lineage change to move the overall size distribution toward larger or smaller sizes. Thus, size stasis during background intervals appears to result from small and inconsistent effects of within- and among-lineage processes rather than from large but offsetting effects of within- and among-taxon components. These observations are compatible with existing data for other taxa and extinction events, implying that mass extinctions do not influence size evolution by simply selecting against larger organisms. Instead, they appear to create conditions favorable to smaller organisms.


2021 ◽  
pp. jgs2020-186
Author(s):  
Emilio Carrillo ◽  
Roberto Barragán ◽  
Christian Hurtado ◽  
Ysabel Calderón ◽  
Germán Martín ◽  
...  

Late Permian to Early Jurassic strata in northern Peru allows us to carry out a seismo-stratigraphic, litho-tectonic and chemostratigraphic analysis connecting the Andean-Amazonian foreland basins of Huallaga, Ucayali, southern Marañón, and the Eastern Cordillera. This analysis and data integration from Ecuador to western Brazil and southern Peru and Bolivia, allow us to redefine the timing of the major documented tectonic phases and corresponding palaeogeographies of western Gondwana from the late Permian to Triassic. Three litho-tectonic sequences and four associated deformation stages are recognized: 1) A sequence, tectonic relaxation, during late Permian; 2) A-B intra-sequence, folding-and-thrusting attributed to a continuation in time of the Gondwanide Orogeny, during the Early to Middle Triassic; 3) B sequence, rifting, attributed to Gondwana breakup during the Middle and Late Triassic; and 4) C Sequence, thermal sag, during the Late Triassic. Evaporites and carbonates (A sequence) dominated a low subsidence basin with southern restricted marine inflow at the Permian-Triassic boundary. A novel palaeogeographic model for these evaporites suggests that this saline basin extended up to 50,000 km2 in a restricted environment area with a potential bullseye pattern. The last pulse of the Gondwanide Orogeny and associated fold and thrust belt (A-B intra-sequence) exhumed previous the sequence generating emerged areas with little to no sedimentation. Red beds (B sequence) characterize the rifting stage, representing the syn-depositional infill of continental grabens, likely extending to the Acre Basin in Brazil. Finally, during the thermal sag, a marine inflow likely from the northwestern part of Peru generated sedimentation of carbonates and evaporites (C Sequence) to the west and east of the Peruvian margin. This sediment differentiation was, in part, controlled by the existence of pre-existing grabens associated to the previous rifting stage. This interpretation, together with other evaporitic occurrences attributed here to a Late Triassic epoch in south and north Peru and west Brazil, suggest the existence of an evaporitic basin filling an undeformed area of probably ca. 170,000 km2. It is therefore suggestive of the existence of a Late Triassic (Norian to Rhaetian; 217 to 204 Ma) salt giant controlled by thermal sag in western Gondwana. Our results are of great relevance for any future interpretation related to mass extinctions, paleoclimatic analysis and ocean dynamics during the Permian and Triassic as well as natural resources distribution between Ecuador and Bolivia.


Sign in / Sign up

Export Citation Format

Share Document