Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera

Paleobiology ◽  
2012 ◽  
Vol 38 (4) ◽  
pp. 627-643 ◽  
Author(s):  
Brianna L. Rego ◽  
Steve C. Wang ◽  
Demir Altiner ◽  
Jonathan L. Payne

One of the best-recognized patterns in the evolution of organismal size is the tendency for mean and maximum size within a clade to decrease following a major extinction event and to increase during the subsequent recovery interval. Because larger organisms are typically thought to be at higher extinction risk than their smaller relatives, it has commonly been assumed that size reduction mostly reflects the selective extinction of larger species. However, to our knowledge the relative importance of within- and among-lineage processes in driving overall trends in body size has never been compared quantitatively. In this study, we use a global, specimen-level database of foraminifera to study size evolution from the Late Permian through Late Triassic. We explicitly decompose size evolution into within- and among-genus components. We find that size reduction following the end-Permian mass extinction was driven more by size reduction within surviving species and genera than by the selective extinction of larger taxa. Similarly, we find that increase in mean size across taxa during Early Triassic biotic recovery was a product primarily of size increase within survivors and the extinction of unusually small taxa, rather than the origination of new, larger taxa. During background intervals we find no strong or consistent tendency for extinction, origination, or within-lineage change to move the overall size distribution toward larger or smaller sizes. Thus, size stasis during background intervals appears to result from small and inconsistent effects of within- and among-lineage processes rather than from large but offsetting effects of within- and among-taxon components. These observations are compatible with existing data for other taxa and extinction events, implying that mass extinctions do not influence size evolution by simply selecting against larger organisms. Instead, they appear to create conditions favorable to smaller organisms.

2012 ◽  
Vol 279 (1736) ◽  
pp. 2180-2187 ◽  
Author(s):  
Roland B. Sookias ◽  
Richard J. Butler ◽  
Roger B. J. Benson

A major macroevolutionary question concerns how long-term patterns of body-size evolution are underpinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant large-bodied terrestrial fauna during the Triassic (approx. 252–201 million years ago). This landmark event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size dataset of more than 400 therapsid and archosauromorph species spanning the Late Permian–Middle Jurassic. Maximum-likelihood analyses indicate that Cope's rule (an active within-lineage trend of body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary to proposals that Cope's rule is central to vertebrate evolution. Instead, passive processes predominate in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important than the external environment. This clade-dependence is exemplified by maximum size of Middle–early Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-accepted ‘rule’ that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but were facilitated by higher archosauromorph growth rates.


2021 ◽  
pp. jgs2020-186
Author(s):  
Emilio Carrillo ◽  
Roberto Barragán ◽  
Christian Hurtado ◽  
Ysabel Calderón ◽  
Germán Martín ◽  
...  

Late Permian to Early Jurassic strata in northern Peru allows us to carry out a seismo-stratigraphic, litho-tectonic and chemostratigraphic analysis connecting the Andean-Amazonian foreland basins of Huallaga, Ucayali, southern Marañón, and the Eastern Cordillera. This analysis and data integration from Ecuador to western Brazil and southern Peru and Bolivia, allow us to redefine the timing of the major documented tectonic phases and corresponding palaeogeographies of western Gondwana from the late Permian to Triassic. Three litho-tectonic sequences and four associated deformation stages are recognized: 1) A sequence, tectonic relaxation, during late Permian; 2) A-B intra-sequence, folding-and-thrusting attributed to a continuation in time of the Gondwanide Orogeny, during the Early to Middle Triassic; 3) B sequence, rifting, attributed to Gondwana breakup during the Middle and Late Triassic; and 4) C Sequence, thermal sag, during the Late Triassic. Evaporites and carbonates (A sequence) dominated a low subsidence basin with southern restricted marine inflow at the Permian-Triassic boundary. A novel palaeogeographic model for these evaporites suggests that this saline basin extended up to 50,000 km2 in a restricted environment area with a potential bullseye pattern. The last pulse of the Gondwanide Orogeny and associated fold and thrust belt (A-B intra-sequence) exhumed previous the sequence generating emerged areas with little to no sedimentation. Red beds (B sequence) characterize the rifting stage, representing the syn-depositional infill of continental grabens, likely extending to the Acre Basin in Brazil. Finally, during the thermal sag, a marine inflow likely from the northwestern part of Peru generated sedimentation of carbonates and evaporites (C Sequence) to the west and east of the Peruvian margin. This sediment differentiation was, in part, controlled by the existence of pre-existing grabens associated to the previous rifting stage. This interpretation, together with other evaporitic occurrences attributed here to a Late Triassic epoch in south and north Peru and west Brazil, suggest the existence of an evaporitic basin filling an undeformed area of probably ca. 170,000 km2. It is therefore suggestive of the existence of a Late Triassic (Norian to Rhaetian; 217 to 204 Ma) salt giant controlled by thermal sag in western Gondwana. Our results are of great relevance for any future interpretation related to mass extinctions, paleoclimatic analysis and ocean dynamics during the Permian and Triassic as well as natural resources distribution between Ecuador and Bolivia.


Paleobiology ◽  
2015 ◽  
Vol 42 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Ellen K. Schaal ◽  
Matthew E. Clapham ◽  
Brianna L. Rego ◽  
Steve C. Wang ◽  
Jonathan L. Payne

AbstractThe small size of Early Triassic marine organisms has important implications for the ecological and environmental pressures operating during and after the end-Permian mass extinction. However, this “Lilliput Effect” has only been documented quantitatively in a few invertebrate clades. Moreover, the discovery of Early Triassic gastropod specimens larger than any previously known has called the extent and duration of the Early Triassic size reduction into question. Here, we document and compare Permian-Triassic body size trends globally in eight marine clades (gastropods, bivalves, calcitic and phosphatic brachiopods, ammonoids, ostracods, conodonts, and foraminiferans). Our database contains maximum size measurements for 11,224 specimens and 2,743 species spanning the Late Permian through the Middle to Late Triassic. The Permian/Triassic boundary (PTB) shows more size reduction among species than any other interval. For most higher taxa, maximum and median size among species decreased dramatically from the latest Permian (Changhsingian) to the earliest Triassic (Induan), and then increased during Olenekian (late Early Triassic) and Anisian (early Middle Triassic) time. During the Induan, the only higher taxon much larger than its long-term mean size was the ammonoids; they increased significantly in median size across the PTB, a response perhaps related to their comparatively rapid diversity recovery after the end-Permian extinction. The loss of large species in multiple clades across the PTB resulted from both selective extinction of larger species and evolution of surviving lineages toward smaller sizes. The within-lineage component of size decrease suggests that only part of the size decrease can be related to the end-Permian kill mechanism; in addition, Early Triassic environmental conditions or ecological pressures must have continued to favor small body size as well. After the end-Permian extinction, size decrease occurred across ecologically and physiologically disparate clades, but this size reduction was limited to the first part of the Early Triassic (Induan). Nektonic habitat or physiological buffering capacity may explain the contrast of Early Triassic size increase and diversification in ammonoids versus size reduction and slow recovery in benthic clades.


2016 ◽  
Vol 113 (42) ◽  
pp. E6325-E6334 ◽  
Author(s):  
Steven M. Stanley

Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor–Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ∼81% of marine species died out in the great terminal Permian crisis, whereas levels of 90–96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.


2021 ◽  
Author(s):  
Jaleigh Q. Pier ◽  
Sarah K. Brisson ◽  
J. Andrew Beard ◽  
Michael T Hren ◽  
Andrew M Bush

Abstract The fossil record can illuminate factors that contribute to extinction risk during times of global environmental disturbance; for example, inferred thermal tolerance is an important predictor of extinction during several mass extinctions that corresponded with climate change1,2. Additionally, members of geographically isolated biotas may face higher risk because they have less opportunity to migrate to suitable climate refugia during environmental disturbances. Here, we investigate how these two types of risk intersect in the well-preserved brachiopod fauna of the Appalachian Foreland Basin during the two pulses of the Frasnian-Famennian mass extinction (Late Devonian, ~372 Ma3,4). The selectivity of extinction supports climate change (cooling) as the primary kill mechanism in this fauna, with warm-adapted taxa going extinct preferentially. Overall, the extinction was mild relative to other regions, despite the many endemic species. However, taxa that were vulnerable to climate change went extinct more rapidly, during the first extinction pulse, such that the second pulse was insignificant. These results suggest that vulnerable taxa in geographically isolated biotas face heightened extinction risk at the initiation of environmental stress, but that other regions may “catch up” if environmental stress repeats or intensifies.


Paleobiology ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 533-549
Author(s):  
Xu Dai ◽  
Haijun Song

AbstractCosmopolitanism occurred recurrently during the geologic past, especially after mass extinctions, but the underlying mechanisms remain poorly known. Three theoretical models, not mutually exclusive, can lead to cosmopolitanism: (1) selective extinction in endemic taxa, (2) endemic taxa becoming cosmopolitan after the extinction and (3) an increase in the number of newly originated cosmopolitan taxa after extinction. We analyzed an updated occurrence dataset including 831 middle Permian to Middle Triassic ammonoid genera and used two network methods to distinguish major episodes of ammonoid cosmopolitanism during this time interval. Then, we tested the three proposed models in these case studies. Our results confirm that at least two remarkable cosmopolitanism events occurred after the Permian–Triassic and late Smithian (Early Triassic) extinctions, respectively. Partitioned analyses of survivors and newcomers revealed that the immediate cosmopolitanism event (Griesbachian) after the Permian–Triassic event can be attributed to endemic genera becoming cosmopolitan (model 2) and an increase in the number of newly originated cosmopolitan genera after the extinction (model 3). Late Smithian cosmopolitanism is caused by selective extinction in endemic taxa (model 1) and an increase in the number of newly originated cosmopolitan genera (model 3). We found that the survivors of the Permian–Triassic mass extinction did not show a wider geographic range, suggesting that this mass extinction is nonselective among the biogeographic ranges, while late Smithian survivors exhibit a wide geographic range, indicating selective survivorship among cosmopolitan genera. These successive cosmopolitanism events during severe extinctions are associated with marked environmental upheavals such as rapid climate changes and oceanic anoxic events, suggesting that environmental fluctuations play a significant role in cosmopolitanism.


2021 ◽  
Author(s):  
Ingrid Urban ◽  
Sylvain Richoz

<p>The End-Triassic Mass Extinction (ETME) is one of the five major mass extinctions of the Phanerozoic. The deposition of ooids is atypically high in the direct aftermath of major extinction events, including the ETME. Ooids were intensively investigated both petrographically and sedimentologically in the past decades; but only recently their potentialities as archives for the original chemical composition of the oceans where they formed, have gained awareness. Here we present stratigraphical, sedimentological and geochemical aspects for a mid-Norian-Hettangian section from the Emirates.</p><p>Petrographic analyses provided a detailed morphological classification of post-ETME coated grains, supported by point counting of two isochronous geological sections. FE-SE-EDX imaging unraveled peculiar µm-scale features linked to morphology, diagenesis and biotic interaction in the cortex. LA-ICP-MS analyses were performed for specific major and trace elements. Post-extinction oolites show high variability in size and development of the cortex. They range from small (~ 300 µm) and superficial coating, to bigger (up to 800 µm) and well developed. The degree of micritization highlights different oxic conditions in the diagenetic environment. LA-ICP-MS analyses give insights into seawater redox conditions during ooids formation, siliciclastic contamination, diagenetic processes and the role of bacterial strain in shaping the ooids. Petrographical and geochemical data point out to a calcitic deposition of these ooids as odd with the general consideration that the Late Triassic to Early Jurassic was part of the Aragonite sea. This has major implication on the understanding of the carbonate saturation in the oceans just after the mass-extinction and on the interpretation of several proxies as the C and Ca isotope-system.</p><p> </p><p> </p>


Paleobiology ◽  
1988 ◽  
Vol 14 (4) ◽  
pp. 364-369 ◽  
Author(s):  
Arnold I. Miller ◽  
J. John Sepkoski

The global diversification of the class Bivalvia has historically received two conflicting interpretations. One is that a major upturn in diversification was associated with, and a consequence of, the Late Permian mass extinction. The other is that mass extinctions have had little influence and that bivalves have experienced slow but nearly steady exponential diversification through most of their history, unaffected by interactions with other clades. We find that the most likely explanation lies between these two interpretations. Through most of the Phanerozoic, the diversity of bivalves did indeed exhibit slow growth, which was not substantially altered by mass extinctions. However, the presence of “hyperexponential bursts” in diversification during the initial Ordovician radiation and following the Late Permian and Late Cretaceous mass extinctions suggests a more complex history in which a higher characteristic diversification rate was dampened through most of the Phanerozoic. The observed pattern can be accounted for with a two-phase coupled (i.e., interactive) logistic model, where one phase is treated as the “bivalves” and the other phase is treated as a hypothetical group of clades with which the “bivalves” might have interacted. Results of this analysis suggest that interactions with other taxa have substantially affected bivalve global diversity through the Phanerozoic.


Paleobiology ◽  
2012 ◽  
Vol 38 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Steve C. Wang ◽  
Aaron E. Zimmerman ◽  
Brendan S. McVeigh ◽  
Philip J. Everson ◽  
Heidi Wong

A key question in studies of mass extinctions is whether the extinction was a sudden or gradual event. This question may be addressed by examining the locations of fossil occurrences in a stratigraphic section. However, the fossil record can be consistent with both sudden and gradual extinctions. Rather than being limited to rejecting or not rejecting a particular scenario, ideally we should estimate therangeof extinction scenarios that is consistent with the fossil record. In other words, rather than testing the simplified distinction of “sudden versus gradual,” we should be asking, “How gradual?”In this paper we answer the question “How gradual could the extinction have been?” by developing a confidence interval for the duration of a mass extinction. We define the duration of the extinction as the time or stratigraphic thickness between the first and last taxon to go extinct, which we denote by Δ. For example, we would like to be able to say with 90% confidence that the extinction took place over a duration of 0.3 to 1.1 million years, or 24 to 57 meters of stratigraphic thickness. Our method does not deny the possibility of a truly simultaneous extinction; rather, in this framework, a simultaneous extinction is one whose value of Δ is equal to zero years or meters.We present an algorithm to derive such estimates and show that it produces valid confidence intervals. We illustrate its use with data from Late Permian ostracodes from Meishan, China, and Late Cretaceous ammonites from Seymour Island, Antarctica.


Paleobiology ◽  
2012 ◽  
Vol 38 (4) ◽  
pp. 525-537 ◽  
Author(s):  
Loren A. Ballanti ◽  
Alexa Tullis ◽  
Peter D. Ward

The Permian/Triassic mass extinction marks a permanent phylogenetic shift in the composition of the sessile benthos, from one largely dominated by articulate brachiopods to one dominated by mollusks. Widespread evidence of oceanic hypoxia and anoxia at this time provides a possible selective kill mechanism that could help explain the large taxonomic losses in brachiopods compared to the morphologically and ecologically similar bivalve molluscs. Our study compared the oxygen consumption of an articulate brachiopod,Terebratalia transversa, with that of two pteriomorph bivalves,Glycymeris septentrionalisandMytilus trossulus, under normoxia and hypoxia, as well as their tolerance to anoxia, to gain insight into the relative metabolic characteristics of each group. We found no significant difference in the oxygen consumption of the three species when normalized to the same dry-tissue mass. However, when calculated for animals of the same external linear dimensions, bivalve oxygen consumption was two to three times greater than that of brachiopods. Our results also showed no significant decrease in the oxygen consumption of the three species until measured at a partial pressure of oxygen ∼10% of normoxic values. Finally,T. transversaandM. trossulusshowed no significant difference in their tolerance to complete anoxia, but both showed a much lower tolerance than another bivalve,Acila castrensis. Findings from this study suggest that oxygen limitation is unlikely to account for the observed selective extinction of brachiopods during the Permian/Triassic mass extinction. Results may provide valuable information for assessing hypotheses put forth to explain why articulate brachiopods continue to remain a relatively minor group in marine environments.


Sign in / Sign up

Export Citation Format

Share Document