Skeletal Muscle Stem Cells for Muscle Regeneration

Author(s):  
Johnny Kim ◽  
Thomas Braun
2006 ◽  
Vol 31 (6) ◽  
pp. 771-772 ◽  
Author(s):  
David A. Hood ◽  
Thomas J. Hawke

Muscle stem cells are a population of cells that are important for both adaptations to exercise and muscle regeneration. This symposium was designed to highlight the role of these cells during muscle hypertrophy and development, and in response to insulin-like growth factor-1 (IGF-1) induced stimulation.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 183 ◽  
Author(s):  
David Lee ◽  
Akshay Bareja ◽  
David Bartlett ◽  
James White

Skeletal muscle has remarkable regenerative capacity, relying on precise coordination between resident muscle stem cells (satellite cells) and the immune system. The age-related decline in skeletal muscle regenerative capacity contributes to the onset of sarcopenia, prolonged hospitalization, and loss of autonomy. Although several age-sensitive pathways have been identified, further investigation is needed to define targets of cellular dysfunction. Autophagy, a process of cellular catabolism, is emerging as a key regulator of muscle regeneration affecting stem cell, immune cell, and myofiber function. Muscle stem cell senescence is associated with a suppression of autophagy during key phases of the regenerative program. Macrophages, a key immune cell involved in muscle repair, also rely on autophagy to aid in tissue repair. This review will focus on the role of autophagy in various aspects of the regenerative program, including adult skeletal muscle stem cells, monocytes/macrophages, and corresponding age-associated dysfunction. Furthermore, we will highlight rejuvenation strategies that alter autophagy to improve muscle regenerative function.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
William N. Addison ◽  
Katherine C. Hall ◽  
Shoichiro Kokabu ◽  
Takuma Matsubara ◽  
Martin M. Fu ◽  
...  

ABSTRACT Satellite cells (SCs) are skeletal muscle stem cells that proliferate in response to injury and provide myogenic precursors for growth and repair. Zfp423 is a transcriptional cofactor expressed in multiple immature cell populations, such as neuronal precursors, mesenchymal stem cells, and preadipocytes, where it regulates lineage allocation, proliferation, and differentiation. Here, we show that Zfp423 regulates myogenic progression during muscle regeneration. Zfp423 is undetectable in quiescent SCs but becomes expressed during SC activation. After expansion, Zfp423 is gradually downregulated as committed SCs terminally differentiate. Mice with satellite-cell-specific Zfp423 deletion exhibit severely impaired muscle regeneration following injury, with aberrant SC expansion, defective cell cycle exit, and failure to transition efficiently from the proliferative stage toward commitment. Consistent with a cell-autonomous role of Zfp423, shRNA-mediated knockdown of Zfp423 in myoblasts inhibits differentiation. Surprisingly, forced expression of Zfp423 in myoblasts induces differentiation into adipocytes and arrests myogenesis. Affinity purification of Zfp423 in myoblasts identified Satb2 as a nuclear partner of Zfp423 that cooperatively enhances Zfp423 transcriptional activity, which in turn affects myoblast differentiation. In conclusion, by controlling SC expansion and proliferation, Zfp423 is essential for muscle regeneration. Tight regulation of Zfp423 expression is essential for normal progression of muscle progenitors from proliferation to differentiation.


Sign in / Sign up

Export Citation Format

Share Document