skeletal muscle stem cells
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 38)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 17 (1) ◽  
pp. 82-95
Author(s):  
Marina Arjona ◽  
Armon Goshayeshi ◽  
Cristina Rodriguez-Mateo ◽  
Jamie O. Brett ◽  
Pieter Both ◽  
...  

2021 ◽  
pp. 112933
Author(s):  
Ines Lahmann ◽  
Yao Zhang ◽  
Katharina Baum ◽  
Jana Wolf ◽  
Carmen Birchmeier

Author(s):  
Bingyuan Wang ◽  
Jiankang Guo ◽  
Mingrui Zhang ◽  
Zhiguo Liu ◽  
Rong Zhou ◽  
...  

Identifying the genes relevant for muscle development is pivotal to improve meat production and quality in pigs. Insulin-degrading enzyme (IDE), a thiol zinc-metalloendopeptidase, has been known to regulate the myogenic process of mouse and rat myoblast cell lines, while its myogenic role in pigs remained elusive. Therefore, the current study aimed to identify the effects of IDE on the proliferation and apoptosis of porcine skeletal muscle stem cells (PSMSCs) and underlying molecular mechanism. We found that IDE was widely expressed in porcine tissues, including kidney, lung, spleen, liver, heart, and skeletal muscle. Then, to explore the effects of IDE on the proliferation and apoptosis of PSMSCs, we subjected the cells to siRNA-mediated knockdown of IDE expression, which resulted in promoted cell proliferation and reduced apoptosis. As one of key transcription factors in myogenesis, MYOD, its expression was also decreased with IDE knockdown. To further elucidate the underlying molecular mechanism, RNA sequencing was performed. Among transcripts perturbed by the IDE knockdown after, a downregulated gene myostatin (MSTN) which is known as a negative regulator for muscle growth attracted our interest. Indeed, MSTN knockdown led to similar results as those of the IDE knockdown, with upregulation of cell cycle-related genes, downregulation of MYOD as well as apoptosis-related genes, and enhanced cell proliferation. Taken together, our findings suggest that IDE regulates the proliferation and apoptosis of PSMSCs via MSTN/MYOD pathway. Thus, we recruit IDE to the gene family of regulators for porcine skeletal muscle development and propose IDE as an example of gene to prioritize in order to improve pork production.


Aging ◽  
2021 ◽  
Author(s):  
Menghai Zhu ◽  
Chong Lian ◽  
Gang Chen ◽  
Peng Zou ◽  
Beng Gang Qin

2021 ◽  
Author(s):  
Jesse V Kurland ◽  
Ashleigh Van Deusen ◽  
Bradley Pawlikowski ◽  
Monica Hall ◽  
Nicole Dalla Betta ◽  
...  

Skeletal muscle cells are multinucleated syncytial cells arising from cell fusion, yet despite sharing a common cytoplasm individual myonuclei express distinct transcriptional programs. Whether individual myonuclei acquire heterogenous transcriptional states via differences in their progenitors, during differentiation, or once their anatomical position is acquired, is not known. We performed transcriptome and pseudotime analysis of single myogenic nuclei from uninjured and post-injury murine skeletal muscle to assess when myonuclear heterogeneity is acquired. Two distinct progenitors contribute to myonuclei, one a non-myogenic fibroblast subtype, and skeletal muscle stem cells the other. Both progenitors enter a single pseudotime trajectory that bifurcates as myonuclei mature into two branches segregated by myosin isoform expression and metabolic profiles, suggesting transcriptional heterogeneity is acquired as myonuclei mature. In aged skeletal muscle myogenic progenitor expansion is perturbed and nuclei from aged muscle display distinct pseudotemporal kinetics compared to nuclei from young mice. In aged mice, the inferred myogenic differentiation trajectory is delayed, altering the distribution of myogenic nuclei in pseudotime, suggesting that altered transcriptional dynamics in nuclei in aged mice may drive age-associated muscle deficits and bias myonuclei towards acquiring oxidative metabolic profiles.


2021 ◽  
Author(s):  
Felicia Lazure ◽  
Rick Farouni ◽  
Korin Sahinyan ◽  
Darren M. Blackburn ◽  
Aldo Hernandez-Corchado ◽  
...  

Adult stem cells are indispensable for tissue regeneration. Tissue-specific stem cells reside in a specialized location called their niche, where they are in constant cross talk with neighboring niche cells and circulatory signals from their environment. Aging has a detrimental effect on the number and the regenerative function of various stem cells. However, whether the loss of stem cell function is a cause or consequence of their aging niche is unclear. Using skeletal muscle stem cells (MuSCs) as a model, we decouple cell-intrinsic from niche-mediated extrinsic effects of aging on their transcriptome. By combining in vivo MuSC heterochronic transplantation models and computational methods, we show that on a genome-wide scale, age-related altered genes fall into two distinct categories regarding their response to the niche environment. Genes that are inelastic in their response to the niche exhibit altered chromatin accessibility and are associated with differentially methylated regions (DMRs) between young and aged cells. On the other hand, genes that are restorable by niche exposure exhibit altered transcriptome but show no change in chromatin accessibility or DMRs. Taken together, our data suggest that the niche environment plays a decisive role in controlling the transcriptional activity of MuSCs, and exposure to a young niche can reverse approximately half of all age-associated changes that are not epigenetically encoded. The muscle niche therefore serves as an important therapeutic venue to mitigate the negative consequence of aging on tissue regeneration.


2021 ◽  
Author(s):  
Bingyuan Wang ◽  
Jiankang Guo ◽  
Mingrui Zhang ◽  
Zhiguo Liu ◽  
Rong Zhou ◽  
...  

Abstract Background: Identifying the genes relevant for muscle development is pivotal to improve meat production and quality in pigs. Insulin-degrading enzyme (IDE), a thiol zinc-metalloendopeptidase, has been known to regulate the myogenic process of mouse and rat myoblast cell lines, while its myogenic role in pigs remained elusive. Therefore, the current study aimed to identify the effects of IDE on the proliferation and apoptosis of porcine skeletal muscle stem cells and underlying molecular mechanism.Results: We found in the present study that IDE was widely expressed in porcine tissues, including kidney, lung, spleen, liver, heart, and skeletal muscle. Then, to explore the effects of IDE on the proliferation and apoptosis of porcine skeletal muscle stem cells, we subjected the cells to siRNA-mediated knockdown of IDE expression, which resulted in promoted cell proliferation and reduced apoptosis. As one of key transcription factors in myogenesis, MYOD, its expression was also decreased with IDE knockdown. To further elucidate the underlying molecular mechanism, RNA sequencing was performed. Among transcripts perturbed by the IDE knockdown after, a down-regulated gene myostatin (MSTN) which is known as a negative regulator for muscle growth attracted our interest. Indeed, MSTN knockdown led to similar results as those of the IDE knockdown, with upregulation of cell cycle-related genes, downregulation of MYOD as well as apoptosis-related genes, and enhanced cell proliferation.Conclusion: Our findings suggest that IDE regulates the proliferation and apoptosis of porcine skeletal muscle stem cells through MSTN/MYOD pathway. Thus, we recruit IDE to the gene family of regulators for porcine skeletal muscle development, and propose IDE as an example of gene to prioritize in order to improve pork production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Zhang ◽  
Ines Lahmann ◽  
Katharina Baum ◽  
Hiromi Shimojo ◽  
Philippos Mourikis ◽  
...  

AbstractCell-cell interactions mediated by Notch are critical for the maintenance of skeletal muscle stem cells. However, dynamics, cellular source and identity of functional Notch ligands during expansion of the stem cell pool in muscle growth and regeneration remain poorly characterized. Here we demonstrate that oscillating Delta-like 1 (Dll1) produced by myogenic cells is an indispensable Notch ligand for self-renewal of muscle stem cells in mice. Dll1 expression is controlled by the Notch target Hes1 and the muscle regulatory factor MyoD. Consistent with our mathematical model, our experimental analyses show that Hes1 acts as the oscillatory pacemaker, whereas MyoD regulates robust Dll1 expression. Interfering with Dll1 oscillations without changing its overall expression level impairs self-renewal, resulting in premature differentiation of muscle stem cells during muscle growth and regeneration. We conclude that the oscillatory Dll1 input into Notch signaling ensures the equilibrium between self-renewal and differentiation in myogenic cell communities.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
F. Relaix ◽  
M. Bencze ◽  
M. J. Borok ◽  
A. Der Vartanian ◽  
F. Gattazzo ◽  
...  

AbstractSkeletal muscle has remarkable regeneration capabilities, mainly due to its resident muscle stem cells (MuSCs). In this review, we introduce recently developed technologies and the mechanistic insights they provide to the understanding of MuSC biology, including the re-definition of quiescence and Galert states. Additionally, we present recent studies that link MuSC function with cellular heterogeneity, highlighting the complex regulation of self-renewal in regeneration, muscle disorders and aging. Finally, we discuss MuSC metabolism and its role, as well as the multifaceted regulation of MuSCs by their niche. The presented conceptual advances in the MuSC field impact on our general understanding of stem cells and their therapeutic use in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document