Endocytosis and Endosomal Sorting of Receptor Tyrosine Kinases

Author(s):  
Alexander Sorkin ◽  
Arola Fortian
2009 ◽  
Vol 37 (6) ◽  
pp. 1193-1197 ◽  
Author(s):  
Alexander F. Bruns ◽  
Leyuan Bao ◽  
John H. Walker ◽  
Sreenivasan Ponnambalam

The mammalian endothelium expresses two related but distinct receptor tyrosine kinases, VEGFR1 and VEGFR2 [VEGF (vascular endothelial growth factor) receptor 1 and 2], that regulate the vascular response to a key cytokine, VEGF-A. In the present review, we suggest a model for integrating the signals from these receptor tyrosine kinases by co-ordinating the spatial and temporal segregation of these membrane proteins linked to distinct signalling outputs associated with each intracellular location. Activation of pro-angiogenic VEGFR2 stimulates a programme of tyrosine phosphorylation, ubiquitination and proteolysis. This is linked to ESCRT (endosomal sorting complex required for transport)-mediated recognition of activated VEGFR2 and sorting in endosomes before arrival in lysosomes for terminal degradation. In addition, Rab GTPases regulate key events in VEGFR2 trafficking between the plasma membrane, early and late endosomes, with distinct roles for Rab4a, Rab5a and Rab7a. Manipulation of GTPase levels affects not only VEGFR2 activation and intracellular signalling, but also functional outputs such as VEGF-A-stimulated endothelial cell migration. In contrast, VEGFR1 displays stable Golgi localization that can be perturbed by cell stimuli that elevate cytosolic Ca2+ ion levels. One model is that VEGFR1 translocates from the trans-Golgi network to the plasma membrane via a calcium-sensitive trafficking step. This allows rapid and preferential sequestration of VEGF-A by the higher-affinity VEGFR1, thus blocking further VEGFR2 activation. Recycling or degradation of VEGFR1 allows resensitization of the VEGFR2-dependent signalling pathway. Thus a dual VEGFR system with a built-in negative-feedback loop is utilized by endothelial cells to sense a key cytokine in vascular tissues.


2019 ◽  
Vol 26 (10) ◽  
pp. 1806-1832 ◽  
Author(s):  
Francesca Musumeci ◽  
Chiara Greco ◽  
Ilaria Giacchello ◽  
Anna Lucia Fallacara ◽  
Munjed M. Ibrahim ◽  
...  

Janus kinases (JAKs) are a family of non-receptor tyrosine kinases, composed by four members, JAK1, JAK2, JAK3 and TYK2. JAKs are involved in different inflammatory and autoimmune diseases, as well as in malignancies, through the activation of the JAK/STAT signalling pathway. Furthermore, the V617F mutation in JAK2 was identified in patients affected by myeloproliferative neoplasms. This knowledge prompted researchers from academia and pharmaceutical companies to investigate this field in order to discover small molecule JAK inhibitors. These efforts recently afforded to the market approval of four JAK inhibitors. Despite the fact that all these drugs are pyrrolo[2,3-d]pyrimidine derivatives, many compounds endowed with different heterocyclic scaffolds have been reported in the literature as selective or multi-JAK inhibitors, and a number of them is currently being evaluated in clinical trials. In this review we will report many representative compounds that have been published in articles or patents in the last five years (period 2013-2017). The inhibitors will be classified on the basis of their chemical structure, focusing, when possible, on their structure activity relationships, selectivity and biological activity. For every class of derivatives, compounds disclosed before 2013 that have entered clinical trials will also be briefly reported, to underline the importance of a particular chemical scaffold in the search for new inhibitors.


Sign in / Sign up

Export Citation Format

Share Document