normal bladder
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 70)

H-INDEX

26
(FIVE YEARS 3)

Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Jeannette D. Andersen ◽  
Knud Fabrin ◽  
Astrid Petersen ◽  
Helle D. Zacho

Urachal cancer arises from an embryologic remnant of the urogenital sinus and allantois and accounts for approximately 1% of bladder malignancies. The most encountered histologic subtype is adenocarcinoma. We present a 76-year-old man suspected to have an advanced sigmoid cancer infiltrating nearby organs. A supplemental 18F-FDG PET/CT showed high tracer uptake in a tumorous process coherent with the dome of the bladder wall involving the sigmoid colon. Cystoscopy revealed a normal bladder wall, except for a small edematous area in the anterior bladder. Biopsies from the sigmoid colon and transurethral resection from the bladder confirmed a urothelial carcinoma originating from the urachus.


2021 ◽  
Author(s):  
Jayoung Kim ◽  
Austin Yeon ◽  
Khandakar Tanvir Ahmed ◽  
Wei Zhang ◽  
Khae-Hawn Kim ◽  
...  

Abstract INTRODUCTION. Interstitial cystitis/painful bladder syndrome (IC) is characterized by chronic bladder pain and urinary storage symptoms. IC affects more than 3.3 million women in the U.S. alone. Ibis T-5000 assays and next generation sequencing have revealed that the C. albicans fungus is highly abundant in the urine of IC patients, particularly those who report greater pain, urinary urgency, and flares. However, currently, the clinical significance of C. albicans in the urine remains elusive. Here, we report the pathological effects and mechanisms triggered by C. albicans in a healthy normal bladder. METHODS. Immortalized bladder epithelial cells were infected with C. albicans. Perturbations in gene expression were identified using an Affymetrix gene microarray and subsequently followed with bioinformatic analyses, including gene set enrichment. Inflammatory and apoptotic genes were quantified using RT-PCR and Western blot analyses. Central signal pathways were examined using Western blot analysis. RESULTS. DNA microarray analysis showed alterations in the transcriptome of bladder epithelial cells infected with C. albicans over both the short and long terms. Key inflammatory and apoptosis networks were changed, which was consistent with several cellular events. Cellular levels of reactive oxygen species and nitrogen oxide increased after infection. Productions of cyclooxygenase-2 and prostaglandine E2 also increased after C. albicans infection, and their productions were suppressed by blockage of reactive oxygen species-epidermal growth factor receptor-Erk pathway. CONCLUSIONS. This study provides evidence that C. albicans infection triggers inflammation and cellular damage by dysregulating key regulatory genes, signaling pathways, and bioactive species in normal bladder cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenbiao Ren ◽  
Jiao Hu ◽  
Huihuang Li ◽  
Jinbo Chen ◽  
Jian Ding ◽  
...  

BackgroundMicroRNAs, small non-coding RNA molecules with about 22 nucleotides in length, play a significant role in the development of bladder cancer. Previous studies found that miR-616-5p could promote the progress of cancers. However, its role in bladder cancer remains unclear. In the study, we aimed to demonstrate how miR-616-5p impacts the invasion and migration of bladder cancer and its potential downstream targets.MethodsFirstly, qRT-PCR was used to detect the expression of miR-616-5p in normal bladder uroepithelial cell lines and bladder cancer cell lines. Then, chamber–transwell invasion and wound healing migration assays were used to detect the roles of miR-616-5p and NR2C2 in invasion and migration. Subsequently, Western blot was used to evaluate the regulation effects of miR-616-5p and NR2C2. Finally, luciferase assays were performed to manifest the mechanism of miR-616-5p and NR2C2 regulation.ResultsWe found that miR-616-5p was upregulated in bladder cancer, and it could promote the invasion and migration of bladder cancer in vitro. Moreover, we demonstrated that NR2C2 was a downstream target of miR-616-5p. miR-616-5p could inhibit the expression of NR2C2 by binding to the 3′UTR of NR2C2 mRNA. Importantly, patients with a high expression of NR2C2 showed better prognoses in bladder cancer.ConclusionsThis study identifies that miR-616-5p can promote bladder cancer progression via altering the expression of NR2C2. Therefore, identifying miR-616-5p expression levels might be a useful strategy for developing potential therapeutic targets in bladder cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuhan Sun ◽  
Alexander James Sedgwick ◽  
Md Abdullah-Al-Kamran Khan ◽  
Yaseelan Palarasah ◽  
Stefano Mangiola ◽  
...  

Activation of natural killer (NK) cell function is regulated by cytokines, such as IL-2, and secreted factors upregulated in the tumor microenvironment, such as platelet-derived growth factor D (PDGF-DD). In order to elucidate a clinical role for these important regulators of NK cell function in antitumor immunity, we generated transcriptional signatures representing resting, IL-2-expanded, and PDGF-DD-activated, NK cell phenotypes and established their abundance in The Cancer Genome Atlas bladder cancer (BLCA) dataset using CIBERSORT. The IL-2-expanded NK cell phenotype was the most abundant in low and high grades of BLCA tumors and was associated with improved prognosis. In contrast, PDGFD expression was associated with numerous cancer hallmark pathways in BLCA tumors compared with normal bladder tissue, and a high tumor abundance of PDGFD transcripts and the PDGF-DD-activated NK cell phenotype were associated with a poor BLCA prognosis. Finally, high tumor expression of transcripts encoding the activating NK cell receptors, KLRK1 and the CD160–TNFRSF14 receptor–ligand pair, was strongly correlated with the IL-2-expanded NK cell phenotype and improved BLCA prognosis. The transcriptional parameters we describe may be optimized to improve BLCA patient prognosis and risk stratification in the clinic and potentially provide gene targets of therapeutic significance for enhancing NK cell antitumor immunity in BLCA.


2021 ◽  
Author(s):  
Yongxing Peng ◽  
Minqin Mao ◽  
Zhonglai Li ◽  
Qipeng Xia ◽  
Honghua Tong

Abstract Background: Cytology and transurethral cystoscopy constitute the gold standard for the diagnosis of bladder cancer (BC). However, some minor lesions cannot be detected in time with these techniques, resulting in a high rate of missed diagnosis. Finding biomarkers that are economical, convenient, sensitive, and specific has become an urgent priority.Methods: Gene expression profile data from BC and normal bladder tissue were downloaded from the Gene Expression Omnibus (GEO) database and used as a training set to screen for differentially expressed genes (DEGs). The bladder gene expression and related clinical data derived from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used as a validation set. The effectiveness of the DEGs as diagnostic criteria was verified in terms of gene expression, gene mutation and diagnostic efficiency.Results: Two upregulated and eight downregulated hub genes were identified by screening. In terms of gene expression, the expression levels of these genes were significantly different between bladder cancer tissues and normal tissues. In terms of clinical diagnostic efficacy, TOP2A had the highest single diagnostic value, while the combinations of TOP2A/CNN1, TOP2A/ISG15/CNN1 and TOP2AISG15/ACTG2 had the largest area under the curve (AUC) among two- or three-indicator combinations.Conclusion: TOP2A, either alone or as part of a combination, has notable diagnostic advantages. However, this still needs to be confirmed in a larger sample with further biological experiments.


2021 ◽  
Author(s):  
Jayoung Kim ◽  
Austin Yeon ◽  
Khandakar Ahmed ◽  
Wei Zhang ◽  
Khae-Hawn Kim ◽  
...  

Abstract INTRODUCTION. Interstitial cystitis/painful bladder syndrome (IC) is characterized by chronic bladder pain and urinary storage symptoms. IC affects more than 3.3 million women in the U.S. alone. Ibis T-5000 assays and next generation sequencing have revealed that the C. albicans fungus is highly abundant in the urine of IC patients, particularly those who report greater pain, urinary urgency, and flares. However, currently, the clinical significance of C. albicans in the urine remains elusive. Here, we report the pathological effects and mechanisms triggered by C. albicans in a healthy normal bladder. METHODS. Immortalized bladder epithelial cells were infected with C. albicans. Perturbations in gene expression were identified using an Affymetrix gene microarray and subsequently followed with bioinformatic analyses, including gene set enrichment. Inflammatory and apoptotic genes were quantified using RT-PCR and Western blot analyses.Central signal pathways were examined using Western blot analysis. RESULTS. DNA microarray analysis showed alterations in the transcriptome of bladder epithelial cells infected with C. albicans over both the short and long terms. Key inflammatory and apoptosis networks were changed, which was consistent with several cellular events. Cellular levels of reactive oxygen species and nitrogen oxide increased after infection. Productions of cyclooxygenase-2 and prostaglandine E2 also increased after C. albicans infection, and their productions were suppressed by blockage of reactive oxygen species-epidermal growth factor receptor-Erk pathway. CONCLUSIONS. This study provides evidence that C. albicans infection triggers inflammation and cellular damage by dysregulating key regulatory genes, signaling pathways, and bioactive species in normal bladder cells.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1615
Author(s):  
Olga Streltsova ◽  
Elena Kiseleva ◽  
Varvara Dudenkova ◽  
Ekaterina Sergeeva ◽  
Ekaterina Tararova ◽  
...  

Radiation therapy is one of the cardinal approaches in the treatment of malignant tumors of the pelvis. It leads to the development of radiation-induced complications in the normal tissues. Thus, the evaluation of radiation-induced changes in the extracellular matrix of the normal tissue is deemed urgent, since connective tissue stroma degradation plays a crucial role in the development of Grade 3–4 adverse effects (hemorrhage, necrosis, and fistula). Such adverse effects not only drastically reduce the patients’ quality of life but can also become life-threatening. The aim of this study is to quantitatively analyze the bladder collagen state in patients who underwent radiation therapy for cervical and endometrial cancer and in patients with chronic bacterial cystitis and compare them to the normal bladder extracellular matrix. Materials and methods: One hundred and five patients with Grade 2–4 of radiation cystitis, 67 patients with bacterial chronic cystitis, and 20 volunteers without bladder pathology were enrolled. Collagen changes were evaluated depending on its hierarchical level: fibrils and fibers level by atomic force microscopy; fibers and bundles level by two-photon microscopy in the second harmonic generation (SHG) mode; general collagen architectonics by cross-polarization optical coherence tomography (CP OCT). Results: The main sign of the radiation-induced damage of collagen fibrils and fibers was the loss of the ordered “basket-weave” packing and a significant increase in the total area of ruptures deeper than 1 µm compared to the intact sample. The numerical analysis of SHG images detected that a decrease in the SHG signal intensity of collagen is correlated with the increase in the grade of radiation cystitis. The OCT signal brightness in cross-polarization images demonstrated a gradual decrease compared to the intact bladder depending on the grade of the adverse event. Conclusions: The observed correspondence between the extracellular matrix changes at the microscopic level and at the level of the general organ architectonics allows for the consideration of CP OCT as a method of “optical biopsy” in the grading of radiation-induced collagen damage.


2021 ◽  
Vol 22 (17) ◽  
pp. 9276
Author(s):  
Takahito Kawano ◽  
Yoko Tachibana ◽  
Junichi Inokuchi ◽  
Jeong-Hun Kang ◽  
Masaharu Murata ◽  
...  

Bladder cancer has a high recurrence rate; therefore, frequent and effective monitoring is essential for disease management. Cystoscopy is considered the gold standard for the diagnosis and continuous monitoring of bladder cancer. However, cystoscopy is invasive and relatively expensive. Thus, there is a need for non-invasive, relatively inexpensive urinary biomarker-based diagnoses of bladder cancer. This study aimed to investigate the presence of activated protein kinase Cα (PKCα) in urine samples and the possibility of PKCα as a urinary biomarker for bladder cancer diagnosis. Activated PKCα was found to be present at higher levels in bladder cancer tissues than in normal bladder tissues. Furthermore, high levels of activated PKCα were observed in urine samples collected from orthotopic xenograft mice carrying human bladder cancer cells compared to urine samples from normal mice. These results suggest that activated PKCα can be used as a urinary biomarker to diagnose bladder cancer. To the best of our knowledge, this is the first report describing the presence of activated PKCα in the urine of orthotopic xenograft mice.


2021 ◽  
Author(s):  
Han Wang ◽  
Jieqing Chen ◽  
Xinhui Liao ◽  
Yang Liu ◽  
Aifa Tang ◽  
...  

Abstract BACKGROUND and OBJECTIVE: A better understanding of the molecular mechanisms underlying bladder cancer is necessary to identify candidate therapeutic targets. METHODS: We screened for genes associated with bladder cancer progression and prognosis. Publicly available expression data were obtained from TCGA and GEO to identify differentially expressed genes (DEGs) between bladder cancer and normal bladder tissues. Weighted co-expression networks were constructed, and Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Associations between hub genes and immune infiltration and immune therapy were evaluated. RESULTS: 3461 DEGs in TCGA-BC and 1069 DEGs in the GSE dataset were identified, with 87 overlapping differentially expressed genes between the bladder cancer and normal bladder groups. Hub genes in the tumour group were mainly enriched for cell proliferation-related GO terms and KEGG pathways, while hub genes in the normal group were related to the synthesis and secretion of neurotransmitters. PPI networks for the genes identified in the normal and tumour groups were constructed. Based on a survival analysis, CDH19, RELN, PLP1, and TRIB3 were significantly associated with prognosis (P < 0.05). Four hub genes were significantly enriched in the MAPK signalling pathway, VEGF signalling pathway, WNT signalling pathway, cell cycle, and P53 signalling pathway based on a gene set enrichment analysis; these genes were associated with immune infiltration levels in bladder cancer. CONCLUSIONS: CDH19, RELN, PLP1, and TRIB3 may play important roles in the development of bladder cancer and are potential therapeutic and prognostic targets.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2972
Author(s):  
Sandra Camargo ◽  
Ofer N. Gofrit ◽  
Assaf Assis ◽  
Eduardo Mitrani

We present a three-dimensional model based on acellular scaffolds to recreate bladder carcinoma in vitro that closely describes the in vivo behavior of carcinoma cells. The integrity of the basement membrane and protein composition of the bladder scaffolds were examined by Laminin immunostaining and LC–MS/MS. Human primary bladder carcinoma cells were then grown on standard monolayer cultures and also seeded on the bladder scaffolds. Apparently, carcinoma cells adhered to the scaffold basement membrane and created a contiguous one-layer epithelium (engineered micro-carcinomas (EMCs)). Surprisingly, the gene expression pattern displayed by EMCs was similar to the profile expressed by the carcinoma cells cultured on plastic. However, the pattern of secreted growth factors was significantly different, as VEGF, FGF, and PIGF were secreted at higher levels by EMCs. We found that only the combination of factors secreted by EMCs, but not the carcinoma cells grown on plastic dishes, was able to induce either the pro-inflammatory phenotype or the myofibroblast phenotype depending on the concentration of the secreted factors. We found that the pro-inflammatory phenotype could be reversed. We propose a unique platform that allows one to decipher the paracrine signaling of bladder carcinoma and how this molecular signaling can switch the phenotypes of fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document