Faculty Opinions recommendation of Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus.

Author(s):  
Guoping Feng
2003 ◽  
Vol 163 (6) ◽  
pp. 1313-1326 ◽  
Author(s):  
Mark Henkemeyer ◽  
Olga S. Itkis ◽  
Michelle Ngo ◽  
Peter W. Hickmott ◽  
Iryna M. Ethell

Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons lacking EphB expression fail to form dendritic spines in vitro and they develop abnormal spines in vivo. Defective spine formation in the mutants is associated with a drastic reduction in excitatory glutamatergic synapses and the clustering of NMDA and AMPA receptors. We show further that a kinase-defective, truncating mutation in EphB2 also results in abnormal spine development and that ephrin-B2–mediated activation of the EphB receptors accelerates dendritic spine development. These results indicate EphB receptor cell autonomous forward signaling is responsible for dendritic spine formation and synaptic maturation in hippocampal neurons.


1997 ◽  
Vol 191 (1) ◽  
pp. 14-28 ◽  
Author(s):  
Janet E. Braisted ◽  
Todd McLaughlin ◽  
Hai U. Wang ◽  
Glenn C. Friedman ◽  
David J. Anderson ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (4) ◽  
pp. 1326-1333 ◽  
Author(s):  
Yuichi Oike ◽  
Yasuhiro Ito ◽  
Koichi Hamada ◽  
Xiu-Qin Zhang ◽  
Keishi Miyata ◽  
...  

Although the cellular and molecular mechanisms governing angiogenesis are only beginning to be understood, signaling through endothelial-restricted receptors, particularly receptor tyrosine kinases, has been shown to play a pivotal role in these events. Recent reports show that EphB receptor tyrosine kinases and their transmembrane-type ephrin-B2 ligands play essential roles in the embryonic vasculature. These studies suggest that cell-to-cell repellent effects due to bidirectional EphB/ephrin-B2 signaling may be crucial for vascular development, similar to the mechanism described for neuronal development. To test this hypothesis, we disrupted the precise expression pattern of EphB/ephrin-B2 in vivo by generating transgenic (CAGp-ephrin-B2 Tg) mice that express ephrin-B2 under the control of a ubiquitous and constitutive promoter, CMV enhancer-β-actin promoter-β-globin splicing acceptor (CAG). These mice displayed an abnormal segmental arrangement of intersomitic vessels, while such anomalies were not observed in Tie-2p-ephrin-B2 Tg mice in which ephrin-B2 was overexpressed in only vascular endothelial cells (ECs). This finding suggests that non-ECs expressing ephrin-B2 alter the migration of ECs expressing EphB receptors into the intersomitic region where ephrin-B2 expression is normally absent. CAGp-ephrin-B2 Tg mice show sudden death at neonatal stages from aortic dissecting aneurysms due to defective recruitment of vascular smooth muscle cells to the ascending aorta. EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells plays an essential role in vasculogenesis, angiogenesis, and vessel maturation.


2005 ◽  
Vol 122 (4) ◽  
pp. 501-512 ◽  
Author(s):  
Amy L. Altick ◽  
Christopher Dravis ◽  
Tracey Bowdler ◽  
Mark Henkemeyer ◽  
Grant S. Mastick

Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1397-1410 ◽  
Author(s):  
Sebastian S. Gerety ◽  
David J. Anderson

EphrinB2, a transmembrane ligand of EphB receptor tyrosine kinases, is specifically expressed in arteries. In ephrinB2 mutant embryos, there is a complete arrest of angiogenesis. However, ephrinB2 expression is not restricted to vascular endothelial cells, and it has been proposed that its essential function may be exerted in adjacent mesenchymal cells. We have generated mice in which ephrinB2 is specifically deleted in the endothelium and endocardium of the developing vasculature and heart. We find that such a vascular-specific deletion of ephrinB2 results in angiogenic remodeling defects identical to those seen in the conventional ephrinB2 mutants. These data indicate that ephrinB2 is required specifically in endothelial and endocardial cells for angiogenesis, and that ephrinB2 expression in perivascular mesenchyme is not sufficient to compensate for the loss of ephrinB2 in these vascular cells.


Sign in / Sign up

Export Citation Format

Share Document