Viral–Host Protein Interaction Studies Using Yeast Two-Hybrid Screening Method

Author(s):  
Namrata Dudha ◽  
Sanjay Gupta
2019 ◽  
Vol 94 (1) ◽  
Author(s):  
M. V. Borca ◽  
E. A. Vuono ◽  
E. Ramirez-Medina ◽  
P. Azzinaro ◽  
K. A. Berggren ◽  
...  

ABSTRACT The E2 protein in classical swine fever (CSF) virus (CSFV) is the major virus structural glycoprotein and is an essential component of the viral particle. E2 has been shown to be involved in several functions, including virus adsorption, induction of protective immunity, and virulence in swine. Using the yeast two-hybrid system, we previously identified a swine host protein, dynactin subunit 6 (DCTN6) (a component of the cell dynactin complex), as a specific binding partner for E2. We confirmed the interaction between DCTN6 and E2 proteins in CSFV-infected swine cells by using two additional independent methodologies, i.e., coimmunoprecipitation and proximity ligation assays. E2 residues critical for mediating the protein-protein interaction with DCTN6 were mapped by a reverse yeast two-hybrid approach using a randomly mutated E2 library. A recombinant CSFV mutant, E2ΔDCTN6v, harboring specific substitutions in those critical residues was developed to assess the importance of the E2-DCTN6 protein-protein interaction for virus replication and virulence in swine. CSFV E2ΔDCTN6v showed reduced replication, compared with the parental virus, in an established swine cell line (SK6) and in primary swine macrophage cultures. Remarkably, animals infected with CSFV E2ΔDCTN6v remained clinically normal during the 21-day observation period, which suggests that the ability of CSFV E2 to bind host DCTN6 protein efficiently during infection may play a role in viral virulence. IMPORTANCE Structural glycoprotein E2 is an important component of CSFV due to its involvement in many virus activities, particularly virus-host interactions. Here, we present the description and characterization of the protein-protein interaction between E2 and the swine host protein DCTN6 during virus infection. The E2 amino acid residues mediating the interaction with DCTN6 were also identified. A recombinant CSFV harboring mutations disrupting the E2-DCTN6 interaction was created. The effect of disrupting the E2-DCTN6 protein-protein interaction was studied using reverse genetics. It was shown that the same amino acid substitutions that abrogated the E2-DCTN6 interaction in vitro constituted a critical factor in viral virulence in the natural host, domestic swine. This highlights the potential importance of the E2-DCTN6 protein-protein interaction in CSFV virulence and provides possible mechanisms of virus attenuation for the development of improved CSF vaccines.


2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


2020 ◽  
Vol 286 ◽  
pp. 198072
Author(s):  
Sichao Huang ◽  
Dongliang Fei ◽  
Yueyu Ma ◽  
Chen Wang ◽  
Donghui Shi ◽  
...  

2020 ◽  
Vol 432 (10) ◽  
pp. 3113-3126 ◽  
Author(s):  
Ryan M. Woloschuk ◽  
P. Maximilian M. Reed ◽  
Sherin McDonald ◽  
Maruti Uppalapati ◽  
G. Andrew Woolley

2021 ◽  
Author(s):  
E. A. Vuono ◽  
E. Ramirez-Medina ◽  
L. Velazquez-Salinas ◽  
K. Berggren ◽  
A. Rai ◽  
...  

The classical swine fever virus (CSFV) glycoprotein E2 is the major structural component of the virus particle. E2 is involved in several functions such as virus adsorption to the cell, the elicitation of protective immune responses, and virus virulence in swine. Using a yeast two-hybrid system, we previously identified the swine host protein Torsin-1A, an ATPase protein residing in the endoplasmic reticulum and inner nucleus membrane of the cell, as a specific binding partner for E2. The interaction between Torsin-1A and E2 proteins was confirmed to occur in CSFV-infected swine cells using three independent methodologies: co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA). Furthermore, the E2 residue critical to mediate the protein-protein interaction with Torsin-1A was identified by a reverse yeast two-hybrid using a randomly mutated E2 library. A recombinant CSFV E2 mutant protein with a Q316L substitution failed to bind swine Torsin-1A in the yeast two-hybrid model. In addition, a CSFV infectious clone harboring the E2 Q316L substitution, although expressing substantial levels of E2 protein, repetitively failed to produce virus progeny when the corresponding RNA was transfected into susceptible SK6 cells. Importantly, PLA analysis of the transfected cells demonstrated an abolishment of the interaction between E2 Q316L and Torsin-1A, indicating a critical role for that interaction during CSFV replication. Importance Structural glycoprotein E2 is an important structural component of the CSFV particle. E2 is involved in several virus functions, particularly virus-host interactions. Here we characterize the interaction between CSFV E2 and swine protein Torsin-1A during virus infection. The critical amino acid residue in E2 mediating the interaction with Torsin-1A was identified and the effect of disrupting the E2-Torsin-1A protein-protein interaction was studied using reverse genetics. It is shown that the amino acid substitution abrogating E2-Torsin-1A interaction constitutes a lethal mutation, demonstrating that this virus-host protein-protein interaction is a critical factor during CSFV replication. This highlights the potential importance of the E2-Torsin-1A protein-protein interaction during CSFV replication and provides a potential pathway towards blocking virus replication, an important step towards the potential development of novel virus countermeasures.


2007 ◽  
Vol 18 (11) ◽  
pp. 4317-4326 ◽  
Author(s):  
Hiroshi Qadota ◽  
Kristina B. Mercer ◽  
Rachel K. Miller ◽  
Kozo Kaibuchi ◽  
Guy M. Benian

By yeast two-hybrid screening, we found three novel interactors (UNC-95, LIM-8, and LIM-9) for UNC-97/PINCH in Caenorhabditis elegans. All three proteins contain LIM domains that are required for binding. Among the three interactors, LIM-8 and LIM-9 also bind to UNC-96, a component of sarcomeric M-lines. UNC-96 and LIM-8 also bind to the C-terminal portion of a myosin heavy chain (MHC), MHC A, which resides in the middle of thick filaments in the proximity of M-lines. All interactions identified by yeast two-hybrid assays were confirmed by in vitro binding assays using purified proteins. All three novel UNC-97 interactors are expressed in body wall muscle and by antibodies localize to M-lines. Either a decreased or an increased dosage of UNC-96 results in disorganization of thick filaments. Our previous studies showed that UNC-98, a C2H2 Zn finger protein, acts as a linkage between UNC-97, an integrin-associated protein, and MHC A in myosin thick filaments. In this study, we demonstrate another mechanism by which this linkage occurs: from UNC-97 through LIM-8 or LIM-9/UNC-96 to myosin.


2007 ◽  
Vol 4 (5) ◽  
pp. 405-407 ◽  
Author(s):  
Fulai Jin ◽  
Larisa Avramova ◽  
Jing Huang ◽  
Tony Hazbun

Sign in / Sign up

Export Citation Format

Share Document