lim domains
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 25)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Pankaj Kumar Chauhan ◽  
R. Sowdhamini

Abstract Cardiomyopathies are a severe and chronic cardiovascular burden worldwide, affecting a large cohort in the general population. Cysteine and glycine-rich protein 3 (CSRP3) is one of key proteins implicated in dominant dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). In this study, we device a rapid in-silico screening protocol that creates a mutational landscape map for all possible allowed and disallowed substitutions in the protein of interest. This map provides the structural and functional insights on the stability of LIM domains of CSRP3. Further, the sequence analysis delineates the eukaryotic CSRP3 protein orthologs which complements the mutational map. Next, we also evaluated the effect of HCM/DCM mutations on these domains. One of highly destabilising mutations - L44P (also disease causing) and a neutral mutation - L44M were further subjected to molecular dynamics (MD) simulations. The results establish that L44P substitution affects the LIM domain structure. The present study provides a useful perspective to our understanding of the role of mutations in the CSRP3 LIM domains and their evolution. Experimentally verifying every reported mutation can become challenging both in time and resources used. This study provides a novel screening method for quick identification of key mutation sites for specific protein structures that can reduce the burden on experimental research.


2021 ◽  
Author(s):  
Shahan Mamoor

In these brief notes we document work using published microarray data (1, 2) to pioneer integrative transcriptome analysis comparing vulvar carcinoma to its tissue of origin, the vulva. We report the differential expression of four-and-a-half LIM domains 1, encoded by FHL1, in cancer of the vulva. FHL1 may be of pertinence to understanding transformation and disease progression in vulvar cancer (3).


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2611
Author(s):  
Jayron J. Habibe ◽  
Maria P. Clemente-Olivo ◽  
Carlie J. de Vries

Susceptibility to complex pathological conditions such as obesity, type 2 diabetes and cardiovascular disease is highly variable among individuals and arises from specific changes in gene expression in combination with external factors. The regulation of gene expression is determined by genetic variation (SNPs) and epigenetic marks that are influenced by environmental factors. Aging is a major risk factor for many multifactorial diseases and is increasingly associated with changes in DNA methylation, leading to differences in gene expression. Four and a half LIM domains 2 (FHL2) is a key regulator of intracellular signal transduction pathways and the FHL2 gene is consistently found as one of the top hyper-methylated genes upon aging. Remarkably, FHL2 expression increases with methylation. This was demonstrated in relevant metabolic tissues: white adipose tissue, pancreatic β-cells, and skeletal muscle. In this review, we provide an overview of the current knowledge on regulation of FHL2 by genetic variation and epigenetic DNA modification, and the potential consequences for age-related complex multifactorial diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhenqing Xie ◽  
Yan Xu ◽  
Xiaojing Wei ◽  
Gang An ◽  
Mu Hao ◽  
...  

Myeloma bone disease (MBD), caused by the inhibition of osteoblast activity and the activation of osteoclast in the bone marrow environment, is the most frequent and life-threatening complication in multiple myeloma (MM) patients. Bortezomib (Bzb) was shown to promote MM-derived mesenchymal stem cells (MM-MSCs) differentiation to osteoblast in vitro and in animal models, promoting the bone formation and regeneration, may be mediated via β-catenin/T-cell factor (TCF) pathway. Further defining molecular mechanism of Bzb-enhanced bone formation in MM will be beneficial for the treatment of myeloma patients. The present study has identified for the first time four and a half LIM domains protein 2 (FHL2), a tissue-specific coregulator that interacts with many osteogenic marker molecules, as a therapeutic target to ameliorate MM bone disease. First, increased messenger RNA (mRNA) and protein levels of FHL2, and the mRNA level of main osteoblast markers (including Runx2, ALP, and Col1A1), were found in MM-patients-derived MSCs after Bzb treatment. FHL2 KD with short hairpin RNA (shRNA) reduced the expression of osteoblast marker genes and blocked the osteogenic differentiation of MM-MSCs regardless of the presence or absence of Bzb, implying that FHL2 is an important activator of the osteogenic differentiation of human MSCs under a proteasome inhibition condition. Molecular analysis showed that the enhanced expression of FHL2 was associated with the Bzb-induced upregulation of p53. No significant change at protein level of total β-catenin was observed with or without Bzb treatment. However, it was mostly enriched to nuclei in MSCs after Bzb treatment. Moreover, β-catenin was restricted to the perinuclear region in FHL2 KD cells. These data provide evidence that FHL2 is essential for promoting β-catenin nuclear enrichment in MM-MSCs. In conclusion, FHL2 is critical for Bzb-induced osteoblast differentiation of MM-MSCs and promotes the osteogenesis, through p53 signaling and β-catenin activation. Targeting FHL2 in MM may provide a new therapeutic strategy for treating MBD.


2021 ◽  
Vol 220 (10) ◽  
Author(s):  
Himanish Basu ◽  
Gulcin Pekkurnaz ◽  
Jill Falk ◽  
Wei Wei ◽  
Morven Chin ◽  
...  

Mitochondrial movement and distribution are fundamental to their function. Here we report a mechanism that regulates mitochondrial movement by anchoring mitochondria to the F-actin cytoskeleton. This mechanism is activated by an increase in glucose influx and the consequent O-GlcNAcylation of TRAK (Milton), a component of the mitochondrial motor-adaptor complex. The protein four and a half LIM domains protein 2 (FHL2) serves as the anchor. FHL2 associates with O-GlcNAcylated TRAK and is both necessary and sufficient to drive the accumulation of F-actin around mitochondria and to arrest mitochondrial movement by anchoring to F-actin. Disruption of F-actin restores mitochondrial movement that had been arrested by either TRAK O-GlcNAcylation or forced direction of FHL2 to mitochondria. This pathway for mitochondrial immobilization is present in both neurons and non-neuronal cells and can thereby adapt mitochondrial dynamics to changes in glucose availability.


2021 ◽  
Author(s):  
Pankaj Kumar Chauhan ◽  
Ramanathan Sowdhamini

Cardiomyopathies are a severe and chronic cardiovascular burden worldwide, affecting a large cohort in the general population. Cysteine and glycine-rich protein 3 (CSRP3) is one of key proteins implicated in dominant dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). In this study, we device a rapid in-silico screening protocol that creates a mutational landscape map for all possible allowed and disallowed substitutions in the protein of interest. This map provides the structural and functional insights on the stability of LIM domains of CSRP3. Further, the sequence analysis delineates the eukaryotic CSRP3 protein orthologs which complements the mutational map. Next, we also evaluated the effect of HCM/DCM mutations on these domains. One of highly destabilising mutations - L44P (also disease causing) and a neutral mutation - L44M were further subjected to molecular dynamics (MD) simulations. The results establish that L44P substitution affects the LIM domain structure. The present study provides a useful perspective to our understanding of the role of mutations in the CSRP3 LIM domains and their evolution. Experimentally verifying every reported mutation can become challenging both in time and resources used. This study provides a novel screening method for quick identification of key mutation sites for specific protein structures that can reduce the burden on experimental research.


2021 ◽  
pp. mbc.E21-03-0156
Author(s):  
Stefano Sala ◽  
Patrick W. Oakes

The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin's mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton mechanical state. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2021 ◽  
Author(s):  
Bo Xiang ◽  
Alice H Reis ◽  
Keiji Itoh ◽  
Sergei Y. Sokol

Wilms tumor-1-interacting protein (Wtip) is a LIM-domain-containing adaptor that links cell junctions with actomyosin complexes and modulates actomyosin contractility and ciliogenesis in Xenopus embryos. The Wtip C-terminus with three LIM domains binds binds Shroom3 and modulates Shroom3-induced apical constriction in ectoderm cells. We found that the N-terminal domain localizes to the basal bodies in skin multiciliated cells, but its interacting partners remain largely unknown. Using a novel targeted proximity biotinylation approach with anti-GFP antibody attached to the biotin ligase BirA in the presence of GFP-Wtip-N, we identified SSX2IP as the candidate binding protein. SSX2IP, also known as Msd1 or ADIP, is a centriolar satellite protein that functions as a targeting factor for ciliary membrane proteins. Wtip physically associated with SSX2IP and the two proteins formed mixed spherical aggregates in overexpressing cells in a dose-dependent manner, in a process that resembles phase separation. These results suggest that the interaction between SSX2IP and Wtip is relevant to their functions at the centrosome and basal bodies. The described antibody targeting of biotin ligase should be applicable to other GFP-tagged proteins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. P. Raghavendra ◽  
J. Das ◽  
R. Kumar ◽  
S. P. Gawande ◽  
H. B. Santosh ◽  
...  

AbstractAsiatic cotton (Gossypium arboreum) cultivated as ‘desicotton’ in India, is renowned for its climate resilience and robustness against biotic and abiotic stresses. The genome ofG. arboreumis therefore, considered as a valued reserve of information for discovering novel genes or gene functions for trait improvements in the present context of cotton cultivation world-wide. In the present study, we carried out genome-wide analysis ofLIMgene family in desi cotton and identified twenty LIM domain proteins (GaLIMs) which include sixteen animals CRP-like GaLIMs and four plant specific GaLIMs with presence (GaDA1) or absence (GaDAR) of UIM (Ubiquitin Interacting Motifs). Among the sixteen CRP-like GaLIMs, eleven had two conventional LIM domains while, five had single LIM domain which was not reported inLIMgene family of the plant species studied, except inBrassica rapa.Phylogenetic analysis of these twenty GaLIM proteins in comparison with LIMs of Arabidopsis, chickpea and poplar categorized them into distinct αLIM1, βLIM1, γLIM2, δLIM2 groups in CRP-like LIMs, and GaDA1 and GaDAR in plant specific LIMs group. Domain analysis had revealed consensus [(C-X2-C-X17-H-X2-C)-X2-(C-X2-C-X17-C-X2-H)] and [(C-X2-C-X17-H-X2-C)-X2-(C-X4-C-X15-C-X2-H)] being conserved as first and/or second LIM domains of animal CRP-like GaLIMs, respectively. Interestingly, single LIM domain containing GaLIM15 was found to contain unique consensus with longer inter-zinc-motif spacer but shorter second zinc finger motif. All twentyGaLIMsshowed variable spatio-temporal expression patterns and accordingly further categorized into distinct groups of αLIM1, βLIM1, γLIM2 δLIM2 and plant specific LIM (DA1/DAR). For the first time, response ofGaDA1/DARunder the influence of biotic and abiotic stresses were studied in cotton, involving treatments with phytohormones (Jasmonic acid and Abscisic acid), salt (NaCl) and wilt causing pathogen (Fusarium oxysporum). Expressions patterns ofGaDA1/DARshowed variable response and identifiedGaDA2as a probable candidate gene for stress tolerance inG. arboreum.


2021 ◽  
Author(s):  
Shahan Mamoor

Breast cancer affects women at relatively high frequency (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding four and a half LIM domains 1, FHL1, when comparing primary tumors of the breast to the tissue of origin, the normal breast. FHL1 mRNA was present at significantly lower quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of FHL1 in primary tumors of the breast was correlated with overall survival in patients with basal and luminal A subtype cancers in a contrary manner, demonstrating a complex relationship between primary tumor expression of a differentially expressed gene and patient survival outcomes influenced by molecular subtype. FHL1 may be of relevance to initiation, maintenance or progression of cancers of the female breast.


Sign in / Sign up

Export Citation Format

Share Document