glycoprotein e2
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 12)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Joey McGregor ◽  
Joshua M. Hardy ◽  
Chan-Sien Lay ◽  
Irene Boo ◽  
Michael Piontek ◽  
...  

A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384-661), that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bnAbs) in comparison to the parental form (receptor-binding domain; RBD). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S and RBD-S, and Δ123A7-S and RBDA7-S in which 7 cysteines were replaced with alanines. While all four E2-S VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells, and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bnmAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (nAbs), with three of those animals generating bnAbs against 7 genotypes. Immune serum generated by animals with nAbs mapped to major neutralization epitopes located at residues 412-420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease including cirrhosis and cancer. Broadly neutralizing antibodies that recognise the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus like particles that display epitopes recognised by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.


2021 ◽  
Author(s):  
E. A. Vuono ◽  
E. Ramirez-Medina ◽  
L. Velazquez-Salinas ◽  
K. Berggren ◽  
A. Rai ◽  
...  

The classical swine fever virus (CSFV) glycoprotein E2 is the major structural component of the virus particle. E2 is involved in several functions such as virus adsorption to the cell, the elicitation of protective immune responses, and virus virulence in swine. Using a yeast two-hybrid system, we previously identified the swine host protein Torsin-1A, an ATPase protein residing in the endoplasmic reticulum and inner nucleus membrane of the cell, as a specific binding partner for E2. The interaction between Torsin-1A and E2 proteins was confirmed to occur in CSFV-infected swine cells using three independent methodologies: co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA). Furthermore, the E2 residue critical to mediate the protein-protein interaction with Torsin-1A was identified by a reverse yeast two-hybrid using a randomly mutated E2 library. A recombinant CSFV E2 mutant protein with a Q316L substitution failed to bind swine Torsin-1A in the yeast two-hybrid model. In addition, a CSFV infectious clone harboring the E2 Q316L substitution, although expressing substantial levels of E2 protein, repetitively failed to produce virus progeny when the corresponding RNA was transfected into susceptible SK6 cells. Importantly, PLA analysis of the transfected cells demonstrated an abolishment of the interaction between E2 Q316L and Torsin-1A, indicating a critical role for that interaction during CSFV replication. Importance Structural glycoprotein E2 is an important structural component of the CSFV particle. E2 is involved in several virus functions, particularly virus-host interactions. Here we characterize the interaction between CSFV E2 and swine protein Torsin-1A during virus infection. The critical amino acid residue in E2 mediating the interaction with Torsin-1A was identified and the effect of disrupting the E2-Torsin-1A protein-protein interaction was studied using reverse genetics. It is shown that the amino acid substitution abrogating E2-Torsin-1A interaction constitutes a lethal mutation, demonstrating that this virus-host protein-protein interaction is a critical factor during CSFV replication. This highlights the potential importance of the E2-Torsin-1A protein-protein interaction during CSFV replication and provides a potential pathway towards blocking virus replication, an important step towards the potential development of novel virus countermeasures.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Qiang Wei ◽  
Yilin Bai ◽  
Yapeng Song ◽  
Yunchao Liu ◽  
Wei Yu ◽  
...  

AbstractClassical swine fever (CSF) caused by the classical swine fever virus (CSFV) is a highly contagious swine disease resulting in large economical losses worldwide. The viral envelope glycoprotein E2 and Erns are major targets for eliciting antibodies against CSFV in infected animals. In this report, the glycoprotein E2 and Erns were expressed using the baculovirus system and their protective immunity in rabbits were tested. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with CSFV-E2, CSFV-Erns, or their combination (CSFV-E2 + Erns). Besides, a commercial CSFV vaccine (C-strain) and PBS were used as positive or negative controls, respectively. Four weeks after the second immunization, all the rabbits were challenged with 100 RID50 of CSFV C-strain. High levels of CSFV E2-specific antibody, neutralizing antibody and cellular immune responses to CSFV were elicited in the rabbits inoculated with C-strain, CSFV-E2, and CSFV-E2 + Erns. And the rabbits inoculated with the three vaccines received complete protection against CSFV C-strain. However, no neutralizing antibody was detected in the Erns vaccinated rabbits and the rabbits exhibited fever typical of CSFV, suggesting the Erns alone is not able to induce a protective immune response. Taken together, while the Erns could not confer protection against CSFV, E2 and E2 + Erns could not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits.


2021 ◽  
Vol 166 (4) ◽  
pp. 1163-1170
Author(s):  
Carolina de Oliveira Freitas ◽  
Pablo Sebastian Britto de Oliveira ◽  
Francielle Liz Monteiro ◽  
Jéssica Caroline Gomes Noll ◽  
José Valter Joaquim Silva Júnior ◽  
...  

2020 ◽  
Vol 101 (11) ◽  
pp. 1170-1181
Author(s):  
Ulrik Fahnøe ◽  
Yu Deng ◽  
Nana A. Davids ◽  
Louise Lohse ◽  
Jens Bukh ◽  
...  

Border disease virus (BDV) envelope glycoprotein E2 is required for entry into cells and is a determinant of host tropism for sheep and pig cells. Here, we describe adaptive changes in the BDV E2 protein that modify virus replication in pig cells. To achieve this, two BDV isolates, initially collected from a pig and a sheep on the same farm, were passaged in primary sheep and pig cells in parallel with a rescued variant of the pig virus derived from a cloned full-length BDV cDNA. The pig isolate and the rescued virus shared the same amino acid sequence, but the sheep isolate differed at ten residues, including two substitutions in E2 (K771E and Y925H). During serial passage in cells, the viruses displayed clear selectivity for growth in sheep cells; only the cDNA-derived virus adapted to grow in pig cells. Sequencing revealed an amino acid substitution (Q739R) in the E2 domain DA of this rescued virus. Adaptation at the same residue (Q739K/Q739R) was also observed after passaging of the pig isolate in sheep cells. Use of reverse genetics confirmed that changing residue Q739 to R or K (each positively charged) was sufficient to achieve adaptation to pig cells. Furthermore, this change in host tropism was suppressed if Q739R was combined with K771E. Another substitution (Q728R), conferring an additional positive charge, acquired during passaging, restored the growth of the Q739R/K771E variant. Overall, this study provided evidence that specific, positively charged, residues in the E2 domain DA are crucial for pig-cell tropism of BDV.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Libao Xie ◽  
Yuying Han ◽  
Yuteng Ma ◽  
Mengqi Yuan ◽  
Weike Li ◽  
...  

ABSTRACT The classical swine fever virus (CSFV) live attenuated vaccine C-strain is adaptive to rabbits and attenuated in pigs, in contrast with the highly virulent CSFV Shimen strain. Previously, we demonstrated that P108 and T109 on the E2 glycoprotein (E2P108-T109) in domain I (E2DomainI) rather than R132, S133, and D191 in domain II (E2DomainII) determine C-strain’s adaptation to rabbits (ATR) (Y. Li, L. Xie, L. Zhang, X. Wang, C. Li, et al., Virology 519:197–206, 2018). However, it remains elusive whether these critical amino acids affect the ATR of the Shimen strain and virulence in pigs. In this study, three chimeric viruses harboring E2P108-T109, E2DomainI, or E2DomainII of C-strain based on the non-rabbit-adaptive Shimen mutant vSM-HCLVErns carrying the Erns glycoprotein of C-strain were generated and evaluated. We found that E2P108-T109 or E2DomainI but not E2DomainII of C-strain renders vSM-HCLVErns adaptive to rabbits, suggesting that E2P108-T109 in combination with the Erns glycoprotein (E2P108-T109-Erns) confers ATR on the Shimen strain, creating new rabbit-adaptive CSFVs. Mechanistically, E2P108-T109-Erns of C-strain mediates viral entry during infection in rabbit spleen lymphocytes, which are target cells of C-strain. Notably, pig experiments showed that E2P108-T109-Erns of C-strain does not affect virulence compared with the Shimen strain. Conversely, the substitution of E2DomainII and Erns of C-strain attenuates the Shimen strain in pigs, indicating that the molecular basis of the CSFV ATR and that of virulence in pigs do not overlap. Our findings provide new insights into the mechanism of adaptation of CSFV to rabbits and the molecular basis of CSFV adaptation and attenuation. IMPORTANCE Historically, live attenuated vaccines produced by blind passage usually undergo adaptation in cell cultures or nonsusceptible hosts and attenuation in natural hosts, with a classical example being the classical swine fever virus (CSFV) lapinized vaccine C-strain, which was developed by hundreds of passages in rabbits. However, the mechanism of viral adaptation to nonsusceptible hosts and the molecular basis for viral adaptation and attenuation remain largely unknown. In this study, we demonstrated that P108 and T109 on the E2 glycoprotein together with the Erns glycoprotein of the rabbit-adaptive C-strain confer adaptation to rabbits on the highly virulent CSFV Shimen strain by affecting viral entry during infection but do not attenuate the Shimen strain in pigs. Our results provide vital information on the different molecular bases of CSFV adaptation to rabbits and attenuation in pigs.


2019 ◽  
Vol 94 (1) ◽  
Author(s):  
M. V. Borca ◽  
E. A. Vuono ◽  
E. Ramirez-Medina ◽  
P. Azzinaro ◽  
K. A. Berggren ◽  
...  

ABSTRACT The E2 protein in classical swine fever (CSF) virus (CSFV) is the major virus structural glycoprotein and is an essential component of the viral particle. E2 has been shown to be involved in several functions, including virus adsorption, induction of protective immunity, and virulence in swine. Using the yeast two-hybrid system, we previously identified a swine host protein, dynactin subunit 6 (DCTN6) (a component of the cell dynactin complex), as a specific binding partner for E2. We confirmed the interaction between DCTN6 and E2 proteins in CSFV-infected swine cells by using two additional independent methodologies, i.e., coimmunoprecipitation and proximity ligation assays. E2 residues critical for mediating the protein-protein interaction with DCTN6 were mapped by a reverse yeast two-hybrid approach using a randomly mutated E2 library. A recombinant CSFV mutant, E2ΔDCTN6v, harboring specific substitutions in those critical residues was developed to assess the importance of the E2-DCTN6 protein-protein interaction for virus replication and virulence in swine. CSFV E2ΔDCTN6v showed reduced replication, compared with the parental virus, in an established swine cell line (SK6) and in primary swine macrophage cultures. Remarkably, animals infected with CSFV E2ΔDCTN6v remained clinically normal during the 21-day observation period, which suggests that the ability of CSFV E2 to bind host DCTN6 protein efficiently during infection may play a role in viral virulence. IMPORTANCE Structural glycoprotein E2 is an important component of CSFV due to its involvement in many virus activities, particularly virus-host interactions. Here, we present the description and characterization of the protein-protein interaction between E2 and the swine host protein DCTN6 during virus infection. The E2 amino acid residues mediating the interaction with DCTN6 were also identified. A recombinant CSFV harboring mutations disrupting the E2-DCTN6 interaction was created. The effect of disrupting the E2-DCTN6 protein-protein interaction was studied using reverse genetics. It was shown that the same amino acid substitutions that abrogated the E2-DCTN6 interaction in vitro constituted a critical factor in viral virulence in the natural host, domestic swine. This highlights the potential importance of the E2-DCTN6 protein-protein interaction in CSFV virulence and provides possible mechanisms of virus attenuation for the development of improved CSF vaccines.


2019 ◽  
Vol 70 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Tanvi Khera ◽  
Patrick Behrendt ◽  
Dorothea Bankwitz ◽  
Richard J.P. Brown ◽  
Daniel Todt ◽  
...  
Keyword(s):  

2019 ◽  
Vol 162 ◽  
pp. 136-141 ◽  
Author(s):  
Laurent Mailly ◽  
Florian Wrensch ◽  
Laura Heydmann ◽  
Catherine Fauvelle ◽  
Nicolas Brignon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document