Studying HBV Infection and Therapy in Immune-Deficient NOD-Rag1−/−IL2RgammaC-null (NRG) Fumarylacetoacetate Hydrolase (Fah) Knockout Mice Transplanted with Human Hepatocytes

Author(s):  
Feng Li ◽  
Kouki Nio ◽  
Fumihiko Yasui ◽  
Christopher M. Murphy ◽  
Lishan Su
2010 ◽  
Vol 48 (01) ◽  
Author(s):  
M Lütgehetmann ◽  
T Volz ◽  
AW Lohse ◽  
JH Bockmann ◽  
J Petersen ◽  
...  

BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (2) ◽  
Author(s):  
Kai Li ◽  
Seiichi Sato ◽  
Akinori Takaoka

Science ◽  
2019 ◽  
Vol 364 (6438) ◽  
pp. 399-402 ◽  
Author(s):  
Chengang Xiang ◽  
Yuanyuan Du ◽  
Gaofan Meng ◽  
Liew Soon Yi ◽  
Shicheng Sun ◽  
...  

The maintenance of terminally differentiated cells, especially hepatocytes, in vitro has proven challenging. Here we demonstrated the long-term in vitro maintenance of primary human hepatocytes (PHHs) by modulating cell signaling pathways with a combination of five chemicals (5C). 5C-cultured PHHs showed global gene expression profiles and hepatocyte-specific functions resembling those of freshly isolated counterparts. Furthermore, these cells efficiently recapitulated the entire course of hepatitis B virus (HBV) infection over 4 weeks with the production of infectious viral particles and formation of HBV covalently closed circular DNA. Our study demonstrates that, with a chemical approach, functional maintenance of PHHs supports long-term HBV infection in vitro, providing an efficient platform for investigating HBV cell biology and antiviral drug screening.


2019 ◽  
Vol 93 (7) ◽  
Author(s):  
Qingyu Yang ◽  
Qi Zhang ◽  
Xuewu Zhang ◽  
Lei You ◽  
Wenbiao Wang ◽  
...  

ABSTRACTHepatitis B virus (HBV) infection is the leading cause of chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). This study reveals a distinct mechanism underlying the regulation of HBV replication. HBV activates homeobox A10 (HoxA10) in human hepatocytes, leukocytes, peripheral blood mononuclear cells (PBMCs), HepG2-NTCP cells, leukocytes isolated from CHB patients, and HBV-associated HCC tissues. HoxA10 in turn represses HBV replication in human hepatocytes, HepG2-NTCP cells, and BALB/c mice. Interestingly, we show that during early HBV infection, p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) were activated to facilitate HBV replication; however, during late HBV infection, HoxA10 was induced to attenuate HBV replication. Detailed studies reveal that HoxA10 binds to p38 MAPK, recruits SH2-containing protein tyrosine phosphatase 1 (SHP-1) to facilitate SHP-1 in catalyzing dephosphorylation of p38 MAPK/STAT3, and thereby attenuates p38 MAPK/STAT3 activation and HBV replication. Furthermore, HoxA10 binds to the HBV enhancer element I (EnhI)/X promoter, competes with STAT3 for binding of the promoter, and thereby represses HBV transcription. Taken together, these results show that HoxA10 attenuates HBV replication through repressing the p38 MAPK/STAT3 pathway by two approaches: HoxA10 interacts with p38 MAPK and recruits SHP-1 to repress HBV replication, and HoxA10 binds to the EnhI/X promoter and competes with STAT3 to attenuate HBV transcription. Thus, the function of HoxA10 is similar to the action of interferon (IFN) in terms of inhibition of HBV infection; however, the mechanism of HoxA10-mediated repression of HBV replication is different from the mechanism underlying IFN-induced inhibition of HBV infection.IMPORTANCETwo billion people have been infected with HBV worldwide; about 240 million infected patients developed chronic hepatitis B (CHB), and 650,000 die each year from liver cirrhosis (LC) or hepatocellular carcinoma (HCC). This work elucidates a mechanism underlying the control of HBV replication. HBV infection activates HoxA10, a regulator of cell differentiation and cancer progression, in human cells and patients with CHB and HCC. HoxA10 subsequently inhibits HBV replication in human tissue culture cells and mice. Additionally, HoxA10 interacts with p38 MAPK to repress the activation of p38 MAPK and STAT3 and recruits and facilitates SHP-1 to catalyze the dephosphorylation of p38 MAPK and STAT3. Moreover, HoxA10 competes with STAT3 for binding of the HBV X promoter to repress HBV transcription. Thus, this work reveals a negative regulatory mechanism underlying the control of HBV replication and provides new insights into the development of potential agents to control HBV infection.


2020 ◽  
Vol 73 (2) ◽  
pp. 449-451 ◽  
Author(s):  
Julie Lucifora ◽  
Maud Michelet ◽  
Michel Rivoire ◽  
Ulrike Protzer ◽  
David Durantel ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 6 (42) ◽  
pp. 44877-44891 ◽  
Author(s):  
Pierre-Benoit Ancey ◽  
Barbara Testoni ◽  
Marion Gruffaz ◽  
Marie-Pierre Cros ◽  
Geoffroy Durand ◽  
...  

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
J Fabian ◽  
S Urban ◽  
S Dooley ◽  
NM Meindl-Beinker

2015 ◽  
Vol 89 (19) ◽  
pp. 10087-10096 ◽  
Author(s):  
Takuro Uchida ◽  
Nobuhiko Hiraga ◽  
Michio Imamura ◽  
Masataka Tsuge ◽  
Hiromi Abe ◽  
...  

ABSTRACTHepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) are critical in eliminating infection. We developed an animal model in which HBV-infected human hepatocytes are targeted by HBV-specific CTLs. After HBV inoculation in human hepatocyte-transplanted herpes simplex virus type-1 thymidine kinase-NOG mice, human peripheral blood mononuclear cells (PBMCs) were administered, and albumin, HBV DNA, alanine aminotransferase (ALT), and cytokine levels were analyzed. Histopathological and flow-cytometric analysis of infiltrating human immune cells were performed, and the efficacy of CTL-associated antigen-4 immunoglobulin (CTLA4Ig) against liver damage was evaluated. PBMC treatment resulted in massive hepatocyte damage with elevation of ALT, granzyme A, and gamma interferon and decrease in albumin and HBV DNA. The number of liver-infiltrating human lymphocytes and CD8-positive cells was significantly higher in HBV-infected mice. HBV-specific CTLs were detected by core and polymerase peptide-major histocompatibility complex-tetramer, and the population of regulatory T cells was significantly decreased in HBV-infected mice. Serum hepatitis B surface (HBs) antigen became negative, and HBs antibody appeared. CTLA4Ig treatment strongly inhibited infiltration of mononuclear cells. CTLA4Ig treatment will be used to treat patients who develop severe acute hepatitis B to prevent liver transplantation or lethality. This animal model is useful for virological and immunological analysis of HBV infection and to develop new therapies for severe acute hepatitis B.IMPORTANCEWithout liver transplantation, some HBV-infected patients will die from severe liver damage due to acute overreaction of the immune system. No effective treatment exists, due in part to the lack of a suitable animal model. An animal model is necessary to investigate the mechanism of hepatitis and to develop therapeutic strategies to prevent acute liver failure in HBV infection. We developed an animal model in which HBV-infected human hepatocytes are targeted by human HBV-specific CTLs. In this model, HBV-infected human hepatocytes were transplanted into severely immunodeficient NOG mice in order to reconstruct elements of the human immune system. Using this model, we found that CTL-associated antigen-4 immunoglobulin was able to suppress damage to HBV-infected hepatocytes, suggesting an approach to treatment. This animal model is useful for virological and immunological analysis of HBV infection and to develop new therapies for severe acute hepatitis B.


Sign in / Sign up

Export Citation Format

Share Document