Method for Folding of Recombinant Prion Protein to Soluble β-Sheet Secondary Structure

Author(s):  
Laura J. Ellett
2007 ◽  
Vol 61 (10) ◽  
pp. 1025-1031 ◽  
Author(s):  
Julian Ollesch ◽  
Eva Künnemann ◽  
Rudi Glockshuber ◽  
Klaus Gerwert

The conformational change of the recombinant, murine prion protein (PrP) from an α-helical to a β-sheet enriched state was monitored by time-resolved Fourier transform infrared (FT-IR) spectroscopy. The α-to-β transition is induced by reduction of the single disulfide bond in PrP. This transition is believed to generate the scrapie form PrPSc, the supposed infectious agent of transmissible spongiform encephalopathies. We followed the kinetics of this conformational change using a novel method for amide I band analysis of the infrared (IR) spectra. The amide I analysis provides the secondary structure. The amide I decomposition was calibrated with the three dimensional structure of cellular PrP solved by nuclear magnetic resonance (NMR). The novel secondary structure analysis provides a root mean squared deviation (RMSD) of only 3% as compared to the NMR structure. Reduction of α-helical PrP caused the transient accumulation of a partially unfolded intermediate, followed by formation of a state with higher β-sheet than α-helical structure contents. The novel approach allows us to now determine the secondary structure of the β-sheet conformation. This was not determined by either NMR or X-ray. The experiments were performed in a double-sealed security cuvette developed for IR analysis of potentially infectious PrP samples outside the biosafety laboratory.


Biochemistry ◽  
2001 ◽  
Vol 40 (23) ◽  
pp. 6982-6987 ◽  
Author(s):  
Manuel Morillas ◽  
David L. Vanik ◽  
Witold K. Surewicz

2005 ◽  
Vol 386 (6) ◽  
pp. 569-580 ◽  
Author(s):  
Karl-Werner Leffers ◽  
Holger Wille ◽  
Jan Stöhr ◽  
Erika Junger ◽  
Stanley B. Prusiner ◽  
...  

AbstractThe conversion of the α-helical, cellular isoform of the prion protein (PrPC) to the insoluble, β-sheet-rich, infectious, disease-causing isoform (PrPSc) is the fundamental event in the prion diseases. The C-terminal fragment of PrPSc(PrP 27–30) is formed by limited proteolysis and retains infectivity. Unlike full-length PrPSc, PrP 27–30 polymerizes into rod-shaped structures with the ultra-structural and tinctorial properties of amyloid. To study the folding of PrP, both with respect to the formation of PrPScfrom PrPCand the assembly of rods from PrP 27–30, we solubilized Syrian hamster (sol SHa) PrP 27–30 in low concentrations (0.2%) of sodium dodecyl sulfate (SDS) under conditions previously used to study the structural transitions of this protein. Sol SHaPrP 27–30 adopted a β-sheet-rich structure at SDS concentrations between 0.02% and 0.04% and remained soluble. Here we report that NaCl stabilizes SHaPrP 27–30 in a soluble, β-sheet-rich state that allows fibril assembly to proceed over several weeks. Under these conditions, fibril formation occurred not only with sol PrP 27–30, but also with native SHaPrPC. Addition of sphingolipids seems to increase fibril growth. When recombinant (rec) SHaPrP(90–231) was exposed to low concentrations of SDS, similar to those used to polymerize sol SHaPrP 27–30 in the presence of 250 mM NaCl, fibril formation occurred regularly. When fibrils formed from PrP 27–30 or PrPCwere bioassayed in transgenic mice overexpressing full-length SHaPrP, no infectivity was obtained, whereas amyloid fibrils formed of rec mouse PrP(89–230) were infectious. At present, it cannot be determined whether the lack of infectivity is caused by a difference in the structure of the fibrils or in the bioassay conditions.


2000 ◽  
Vol 346 (3) ◽  
pp. 785-791 ◽  
Author(s):  
David R. BROWN

The inherited prion diseases such as Gerstmann-Sträussler-Scheinker syndrome (GSS) are linked to point mutations in the gene coding for the cellular isoform of the prion protein (PrPC). One particular point mutation A117V (Ala117 → Val) is linked to a variable pathology that usually includes deposition of neurofibrillary tangles. A prion protein peptide carrying this point mutation [PrP106-126(117V)] was generated and compared with a peptide based on the normal human sequence [PrP106-126(117A)]. The inclusion of this point mutation increased the toxicity of PrP106-126 which could be linked to an increased β-sheet content. An assay of microtubule formation in the presence of tau indicated that PrP106-126 decreased the rate of microtubule formation that could be related to the displacement of tau. PrP106-126 carrying the 117 mutation was more efficient at inhibiting microtubule formation. These results suggest a possible mechanism of toxicity for protein carrying this mutation via destabilization of the cytoskeleton and deposition of tau in filaments, as observed in GSS.


2005 ◽  
Vol 85 (4) ◽  
pp. 437-448 ◽  
Author(s):  
P. Yu ◽  
J. J. McKinnon ◽  
H. W. Soita ◽  
C. R. Christensen ◽  
D. A. Christensen

The objectives of the study were to use synchrotron Fourier transform infrared microspectroscopy (S-FTIR) as a novel approach to: (1) reveal ultra-structural chemical features of protein secondary structures of flaxseed tissues affected by variety (golden and brown) and heat processing (raw and roasted), and (2) quantify protein secondary structures using Gaussian and Lorentzian methods of multi-component peak modeling. By using multi-component peak modeling at protein amide I region of 1700–1620 cm-1, the results showed that the golden flaxseed contained relatively higher percentage of α-helix (47.1 vs. 36.9%), lower percentage of β-sheet (37.2 vs. 46.3%) and higher (P < 0.05) ratio of α-helix to β-sheet than the brown flaxseed (1.3 vs. 0.8). The roasting reduced (P < 0.05) percentage of α-helix (from 47.1 to 36.1%), increased percentage of β-sheet (from 37.2 to 49.8%) and reduced α-helix to β-sheet ratio (1.3 to 0.7) of the golden flaxseed tissues. However, the roasting did not affect percentage and ratio of α-helix and β-sheet in the brown flaxseed tissue. No significant differences were found in quantification of protein secondary structures between Gaussian and Lorentzian methods. These results demonstrate the potential of highly spatially resolved S-FTIR to localize relatively pure protein in the tissue and reveal protein secondary structures at a cellular level. The results indicated relative differences in protein secondary structures between flaxseed varieties and differences in sensitivities of protein secondary structure to the heat processing. Further study is needed to understand the relationship between protein secondary structure and protein digestion and utilization of flaxseed and to investigate whether the changes in the relative amounts of protein secondary structures are primarily responsible for differences in protein availability. Key words: Synchrotron, FTIR microspectrosopy, flaxseeds, intrinsic structural matrix, protein secondary structures, protein nutritive value


2004 ◽  
Vol 126 (25) ◽  
pp. 7981-7990 ◽  
Author(s):  
Nurettin Demirdöven ◽  
Christopher M. Cheatum ◽  
Hoi Sung Chung ◽  
Munira Khalil ◽  
Jasper Knoester ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document