Single-Particle Tracking of Cell Surface Proteins

Author(s):  
Laabiah Wasim ◽  
Bebhinn Treanor
1996 ◽  
Vol 109 (8) ◽  
pp. 2101-2109
Author(s):  
K.M. Wilson ◽  
I.E. Morrison ◽  
P.R. Smith ◽  
N. Fernandez ◽  
R.J. Cherry

The mobility of cell surface MHC molecules and their ability to form dynamic associations may be related to the physiological status of the cell and to the potential to bind effector T lymphocytes. To investigate these properties, we have prepared HLA DR specific monoclonal antibodies coupled in a 1:1 mole ratio to the fluorescent phycobiliprotein, R-phycoerythrin (PE). We show that these small particles can be sequentially imaged using a cooled slow-scan charge coupled device camera and hence can be used for single particle tracking experiments. We have applied this technique to investigate the movements of HLA DR molecules on fibroblasts transfected with human DR alpha and DR beta genes. PE-IgG was bound to the transfected fibroblasts and particle tracks were obtained by sequential imaging over a period of typically 30 minutes. Analysis of particle tracks revealed the presence of directed motion and domain-limited diffusion in addition to random diffusion. The contributions of these three types of motion showed cell to cell variability. Velocities of directed motion were of the order of 2 nm second-1 whilst domain diameters were in the range 200–800 nm. Diffusion coefficients for random diffusion were in the range 1 × 10(−13)-5 × 10(−12) cm2 second-1. The higher mobilities were observed for the lower intensity fluorescent spots, which possibly correspond to images of single particles. Much lower mobility was observed with a cell where the spot intensities were approximately double that of the lower intensity spots. These spots could be images of double particles implying the association of at least two HLA DR alpha beta dimers. These data are relevant to the study of MHC class II cell surface redistribution and antigen presentation in specific immunity.


1998 ◽  
Vol 140 (5) ◽  
pp. 1227-1240 ◽  
Author(s):  
Yasushi Sako ◽  
Akira Nagafuchi ◽  
Shoichiro Tsukita ◽  
Masatoshi Takeichi ◽  
Akihiro Kusumi

The translational movement of E-cadherin, a calcium-dependent cell–cell adhesion molecule in the plasma membrane in epithelial cells, and the mechanism of its regulation were studied using single particle tracking (SPT) and optical tweezers (OT). The wild type (Wild) and three types of artificial cytoplasmic mutants of E-cadherin were expressed in L-cells, and their movements were compared. Two mutants were E-cadherins that had deletions in the COOH terminus and lost the catenin-binding site(s) in the COOH terminus, with remaining 116 and 21 amino acids in the cytoplasmic domain (versus 152 amino acids for Wild); these are called Catenin-minus and Short-tailed in this paper, respectively. The third mutant, called Fusion, is a fusion protein between E-cadherin without the catenin-binding site and α-catenin without its NH2-terminal half. These cadherins were labeled with 40-nm φ colloidal gold or 210-nm φ latex particles via a monoclonal antibody to the extracellular domain of E-cadherin for SPT or OT experiments, respectively. E-cadherin on the dorsal cell surface (outside the cell–cell contact region) was investigated. Catenin-minus and Short-tailed could be dragged an average of 1.1 and 1.8 μm by OT (trapping force of 0.8 pN), and exhibited average microscopic diffusion coefficients (Dmicro) of 1.2 × 10−10 and 2.1 × 10−10 cm2/s, respectively. Approximately 40% of Wild, Catenin-minus, and Short-tailed exhibited confined-type diffusion. The confinement area was 0.13 μm2 for Wild and Catenin-minus, while that for Short-tailed was greater by a factor of four. In contrast, Fusion could be dragged an average of only 140 nm by OT. Average Dmicro for Fusion measured by SPT was small (0.2 × 10−10 cm2/s). These results suggest that Fusion was bound to the cytoskeleton. Wild consists of two populations; about half behaves like Catenin- minus, and the other half behaves like Fusion. It is concluded that the movements of the wild-type E-cadherin in the plasma membrane are regulated via the cytoplasmic domain by (a) tethering to actin filaments through catenin(s) (like Fusion) and (b) a corralling effect of the network of the membrane skeleton (like Catenin-minus). The effective spring constants of the membrane skeleton that contribute to the tethering and corralling effects as measured by the dragging experiments were 30 and 5 pN/μm, respectively, indicating a difference in the skeletal structures that produce these two effects.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 498
Author(s):  
Chen Zhang ◽  
Kevin Welsher

In this work, we present a 3D single-particle tracking system that can apply tailored sampling patterns to selectively extract photons that yield the most information for particle localization. We demonstrate that off-center sampling at locations predicted by Fisher information utilizes photons most efficiently. When performing localization in a single dimension, optimized off-center sampling patterns gave doubled precision compared to uniform sampling. A ~20% increase in precision compared to uniform sampling can be achieved when a similar off-center pattern is used in 3D localization. Here, we systematically investigated the photon efficiency of different emission patterns in a diffraction-limited system and achieved higher precision than uniform sampling. The ability to maximize information from the limited number of photons demonstrated here is critical for particle tracking applications in biological samples, where photons may be limited.


Sign in / Sign up

Export Citation Format

Share Document