Live Imaging of mRNA Transcription in Drosophila Embryos

Author(s):  
Carmina Angelica Perez-Romero ◽  
Huy Tran ◽  
Mathieu Coppey ◽  
Aleksandra M. Walczak ◽  
Cécile Fradin ◽  
...  
2013 ◽  
Vol 23 (21) ◽  
pp. 2135-2139 ◽  
Author(s):  
Tanguy Lucas ◽  
Teresa Ferraro ◽  
Baptiste Roelens ◽  
Jose De Las Heras Chanes ◽  
Aleksandra M. Walczak ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Jacques P Bothma ◽  
Hernan G Garcia ◽  
Samuel Ng ◽  
Michael W Perry ◽  
Thomas Gregor ◽  
...  

Metazoan genes are embedded in a rich milieu of regulatory information that often includes multiple enhancers possessing overlapping activities. In this study, we employ quantitative live imaging methods to assess the function of pairs of primary and shadow enhancers in the regulation of key patterning genes-knirps, hunchback, and snail-in developing Drosophila embryos. The knirps enhancers exhibit additive, sometimes even super-additive activities, consistent with classical gene fusion studies. In contrast, the hunchback enhancers function sub-additively in anterior regions containing saturating levels of the Bicoid activator, but function additively in regions where there are diminishing levels of the Bicoid gradient. Strikingly sub-additive behavior is also observed for snail, whereby removal of the proximal enhancer causes a significant increase in gene expression. Quantitative modeling of enhancer–promoter interactions suggests that weakly active enhancers function additively while strong enhancers behave sub-additively due to competition with the target promoter.


Author(s):  
Daryl J. V. David ◽  
Melanie A. McGill ◽  
R. F. Andrew McKinley ◽  
Tony J. C. Harris

Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Author(s):  
William Theurkauf

Cell division in eucaryotes depends on coordinated changes in nuclear and cytoskeletal components. In Drosophila melanogaster embryos, the first 13 nuclear divisions occur without cytokinesis. During the final four divisions, nuclei divide in a uniform monolayer at the surface of the embryo. These surface divisions are accompanied by dramatic changes in cortical actin and microtubule structure (Karr and Alberts, 1986), and inhibitor studies indicate that these changes are essential to orderly mitosis (Zalokar and Erk, 1976). Because the early embryo is syncytial, fluorescent probes introduced by microinjection are incorporated in structures associated with all of the nuclei in the blastoderm. In addition, the nuclei divide synchronously every 10 to 20 min. These characteristics make the syncytial blastoderm embryo an excellent system for the analysis of mitotic reorganization of both nuclear and cytoskeletal elements. However, the Drosophila embryo is a large cell, and resolution of cytoskeletal filaments and nuclear structure is hampered by out-of focus signal.


2013 ◽  
Vol 51 (01) ◽  
Author(s):  
N Fekete-Drimusz ◽  
J de la Roche ◽  
F Vondran ◽  
CL Sajti ◽  
MP Manns ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document