nuclear reorganization
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 10)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Xuelong Wang ◽  
Huiping Guo ◽  
Feifei Yu ◽  
Hui Zhang ◽  
Ying Peng ◽  
...  

Heart regeneration after myocardial infarction remains challenging in reconstruction of blood resupply system. Here, we find that in zebrafish heart after resection of the ventricular apex, the local myocardial cells and the clotted blood cells undergo cell remodeling process via cytoplasmic exocytosis and nuclear reorganization within revascularization-based blastema. The regenerative processes are visualized by spatiotemporal expression of three blastema representative factors (alpha-SMA- which marks for fibrogenesis, Flk1for angiogenesis/hematopoiesis, and Pax3a for remusculogensis),and two histone modifications (H3K9Ac and H3K9Me3 mark for chromatin remodeling). Using the cultured zebrafish embryonic fibroblasts we identify blastema fraction components and show that Krt5 peptide could link cytoskeleton network and BMP4 signaling pathway to regulate the transcription and chromatin accessibility at the blastema representative genes and bmp4 genes. Our study provides new mechanistic insights into the epithelial-dependent and revascularization-based blastema regeneration for potential myocardial infarction therapy.


2021 ◽  
Vol 22 (3) ◽  
pp. 1259
Author(s):  
Alba Puente-Bedia ◽  
María T. Berciano ◽  
Olga Tapia ◽  
Carmen Martínez-Cué ◽  
Miguel Lafarga ◽  
...  

Down syndrome (DS) or trisomy of chromosome 21 (Hsa21) is characterized by impaired hippocampal-dependent learning and memory. These alterations are due to defective neurogenesis and to neuromorphological and functional anomalies of numerous neuronal populations, including hippocampal granular cells (GCs). It has been proposed that the additional gene dose in trisomic cells induces modifications in nuclear compartments and on the chromatin landscape, which could contribute to some DS phenotypes. The Ts65Dn (TS) mouse model of DS carries a triplication of 92 genes orthologous to those found in Hsa21, and shares many phenotypes with DS individuals, including cognitive and neuromorphological alterations. Considering its essential role in hippocampal memory formation, we investigated whether the triplication of this set of Hsa21 orthologous genes in TS mice modifies the nuclear architecture of their GCs. Our results show that the TS mouse presents alterations in the nuclear architecture of its GCs, affecting nuclear compartments involved in transcription and pre-rRNA and pre-mRNA processing. In particular, the GCs of the TS mouse show alterations in the nucleolar fusion pattern and the molecular assembly of Cajal bodies (CBs). Furthermore, hippocampal GCs of TS mice present an epigenetic dysregulation of chromatin that results in an increased heterochromatinization and reduced global transcriptional activity. These nuclear alterations could play an important role in the neuromorphological and/or functional alterations of the hippocampal GCs implicated in the cognitive dysfunction characteristic of TS mice.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1856 ◽  
Author(s):  
Vladimir V. Egorov

All kinds of dynamic symmetries in dozy-chaos (quantum-classical) mechanics (Egorov, V.V. Challenges 2020, 11, 16; Egorov, V.V. Heliyon Physics 2019, 5, e02579), which takes into account the chaotic dynamics of the joint electron-nuclear motion in the transient state of molecular “quantum” transitions, are discussed. The reason for the emergence of chaotic dynamics is associated with a certain new property of electrons, consisting in the provocation of chaos (dozy chaos) in a transient state, which appears in them as a result of the binding of atoms by electrons into molecules and condensed matter and which provides the possibility of reorganizing a very heavy nuclear subsystem as a result of transitions of light electrons. Formally, dozy chaos is introduced into the theory of molecular “quantum” transitions to eliminate the significant singularity in the transition rates, which is present in the theory when it goes beyond the Born–Oppenheimer adiabatic approximation and the Franck–Condon principle. Dozy chaos is introduced by replacing the infinitesimal imaginary addition in the energy denominator of the full Green’s function of the electron-nuclear system with a finite value, which is called the dozy-chaos energy γ. The result for the transition-rate constant does not change when the sign of γ is changed. Other dynamic symmetries appearing in theory are associated with the emergence of dynamic organization in electronic-vibrational transitions, in particular with the emergence of an electron-nuclear-reorganization resonance (the so-called Egorov resonance) and its antisymmetric (chaotic) “twin”, with direct and reverse transitions, as well as with different values of the electron–phonon interaction in the initial and final states of the system. All these dynamic symmetries are investigated using the simplest example of quantum-classical mechanics, namely, the example of quantum-classical mechanics of elementary electron-charge transfers in condensed media.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yifeng Jiang ◽  
Lai Chung Liu ◽  
Antoine Sarracini ◽  
Kamil M. Krawczyk ◽  
Jordan S. Wentzell ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 718
Author(s):  
Lidya Kristiani ◽  
Miri Kim ◽  
Youngjo Kim

Aging is characterized by the gradual loss of tissue function and integrity. Activation of inflammatory responses accelerates the deterioration of cells and tissues. Many studies have shown that alteration of the components of the nuclear lamina is associated with inflammation, both in vivo and in vitro. However, the mechanism by which the nuclear lamina regulates inflammation is largely unknown. Recent studies have suggested that the nuclear lamina regulates both organization of the three-dimensional chromatin structure at the nuclear periphery and global gene expression, such as the expression of inflammatory response genes. Here, we discuss the current updates in the research on nuclear lamina alteration, activation of inflammation, and nuclear reorganization in models of cellular senescence and organismal aging.


2020 ◽  
Vol 21 (6) ◽  
pp. 1911 ◽  
Author(s):  
Susanne Tonnemacher ◽  
Mikhail Eltsov ◽  
Burkhard Jakob

Chromatin architecture plays major roles in gene regulation as well as in the repair of DNA damaged by endogenous or exogenous factors, such as after radiation. Opening up the chromatin might provide the necessary accessibility for the recruitment and binding of repair factors, thus facilitating timely and correct repair. The observed formation of ionizing radiation-induced foci (IRIF) of factors, such as 53BP1, upon induction of DNA double-strand breaks have been recently linked to local chromatin decompaction. Using correlative light and electron microscopy (CLEM) in combination with DNA-specific contrasting for transmission electron microscopy or tomography, we are able to show that at the ultrastructural level, these DNA damage domains reveal a chromatin compaction and organization not distinguishable from regular euchromatin upon irradiation with carbon or iron ions. Low Density Areas (LDAs) at sites of particle-induced DNA damage, as observed after unspecific uranyl acetate (UA)-staining, are thus unlikely to represent pure chromatin decompaction. RNA-specific terbium-citrate (Tb) staining suggests rather a reduced RNA density contributing to the LDA phenotype. Our observations are discussed in the view of liquid-like phase separation as one of the mechanisms of regulating DNA repair.


2019 ◽  
Vol 123 (41) ◽  
pp. 8628-8643 ◽  
Author(s):  
Elliot J. Taffet ◽  
Benjamin G. Lee ◽  
Zi S. D. Toa ◽  
Natalie Pace ◽  
Garry Rumbles ◽  
...  

2019 ◽  
Author(s):  
Maikel Castellano-Pozo ◽  
Sarai Pacheco ◽  
Georgios Sioutas ◽  
Angel Luis Jaso-Tamame ◽  
Marian H Dore ◽  
...  

AbstractChromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Meiotic progression involves checkpoint-controlled termination of these events when all homologue pairs achieve synapsis and form crossover precursors. We show that termination of chromosome movement and DSB formation is reversible and is continuously implemented by the synaptonemal complex (SC), which silences chromosome signals that promote CHK-2 activity. Forced removal of the SC or different meiosis-specific cohesin complexes, which are individually required for SC stability, causes rapid CHK-2-dependent reinstallation of the DSB-formation and chromosome-movement machinery. This nuclear reorganization occurs without transcriptional changes, but requires signalling from HORMA protein HTP-1. Conversely, CHK-2 inactivation causes rapid disassembly of the DSB-formation and chromosome-movement machinery. Thus, nuclear organization is constantly controlled by the level of CHK-2 activity. Our results uncover an unexpected plasticity of the meiotic program and show how chromosome signalling integrates nuclear organization with meiotic progression.


2019 ◽  
Vol 35 (3) ◽  
pp. 240-241
Author(s):  
B. Uyanik ◽  
B. B. Grigorash ◽  
B. Uyanik ◽  
O. N. Demidov

Sign in / Sign up

Export Citation Format

Share Document